





Algonquin College


CST 8110 - Introduction to Computing





Midterm #2 - March 19, 1997


11:00 - 11:50 - 50 minutes





Lecture Section 030 - Ian D. Allen














Identification


	


Your name:�
Ian D. Allen�
Please Print Clearly�
 �
�
�
�
�
�
�
Your student ID:�
Professor�
Your Lab Section:�
030�
�
Instructions


Read the whole test before you start.  There are nine questions.  Find the easy questions.  Do the things you know best first.  You have 50 minutes.


Answer questions in the space provided.�Hand in this entire test when you are finished.


No calculators or other aids are permitted.�This test is closed book.


Raise your hand if you have questions.�Do not leave your seat.


You may not be able to complete the entire test.�Remain calm.  Answer as much as you can.


Marking Scheme


This midterm test is marked out of 100; that is two marks per minute.  Marks for each question are listed beside each question.  Divide the marks by two to get a rough idea of how many minutes you should spend on a question, e.g. 20 marks means 10 minutes.





Midterms and class quizzes count together for 35% of your final grade.


Your mark on this midterm is part of that 35%.











�
Q-1	20 marks


Given the constants and variable declarations below, indicate what is stored in memory for each of the following assignment statements.  Make sure you distinguish between integers (e.g. 0) and floating-point (e.g. 0.0) in your answers. If the expression isn’t valid, explain briefly why. 


 


	#define TEN 10


	#define HALF 0.5


	. . .


	double x;


	int j;





�
j = TEN + HALF + TEN�
�
20�
�
�
j = 1 / 0�
�
divide by zero�
�
�
j = 9 % 10 - 2�
�
7�
�
�
j = 7 / (TEN % 2)�
�
divide by zero�
�
�
j = TEN % 8�
�
2�
�
�
j = 2 * 3 + 4 * 5 - 6�
�
20�
�
�
j = 555 / (5 / TEN)�
�
divide by zero�
�
�
j = (555 / 5) / TEN�
�
11�
�
�
x = (3 * 4) / 12 - 12�
�
-11.0�
�
�
x = 10 % (TEN - 10)�
�
divide by zero�
�
�
x = 7 / 10 + 2 * 3�
�
6.0�
�
�
j = 7 / 10 + 2 * 3�
�
6�
�
�
x = 1 + 2 + 9 / TEN�
�
3.0�
�
�
j = 1 + 2 + 9 / TEN�
�
3�
�
�
x = 2 * HALF + 3 / 2.0�
�
2.5�
�
�
j = 2 * HALF + 3 / 2.0�
�
2�
�
�
x = TEN / HALF�
�
20.0�
�
�
j = TEN / HALF�
�
20�
�
�
x = 1 / (9 / TEN)�
�
divide by zero�
�
�
j = 1 / (9 / TEN)�
�
divide by zero�
�



Q-2	4 marks


What are the four steps of Problem Solving?





�
Design�
�
�
Outputs�
�
�
Inputs�
�
�
Algorithm�
�



Q-3	4 marks


What four things may be needed to construct a Loop in an algorithm?





�
Initialization�
�
�
Condition�
�
�
Increment/Decrement�
�
�
Body�
�



Q-4	16 marks


What is the printed output, if anything, of the following pseudocode algorithm?





   number <- 13


   counter <- 2


   WHILE counter <= number


      number <- number - counter


      PUT "Number is " number ", counter is " counter


      counter <- counter + 1


   ENDWHILE


   PUT "DONE: Number is " number ", and loop stopped at " counter





Number is 11, counter is 2�
�
Number is 8, counter is 3�
�
Number is 4, counter is 4�
�
DONE: Number is 4 and loop stopped at 5�
�
�
�
�
�
�
�



Q-5	20 marks


Write only the pseudocode algorithm for a program that prints all of the odd numbers from 230 down to 100.  Do not write any header lines; do not write any C language code.  Your algorithm should have enough detail that a C program could be written from it.





Number ( 230


WHILE Number >= 100


	IF (Number % 2) EQUALS 1


		PUT Number


	ENDIF


	Number ( Number - 1


ENDWHILE








- or –











Number ( 230 - 1


WHILE Number >= 100


	PUT Number


	Number ( Number - 2


ENDWHILE



































Q-6	6 marks


Show how the floating-point number -19.591  would appear when printed using each of the following output formats.  Show leading and/or trailing blanks in the output of formatted numbers using a capital ‘X’ character in place of the blanks that would normally appear, e.g. XXX98.6XX





�
%8.4f�
�
-19.5910�
�
�
%8.3f�
�
X-19.591�
�
�
%8.2f�
�
XX-19.59�
�
�
%8.1f�
�
XXX-19.6�
�
�
%8.0f�
�
XXXXX-20�
�
�
%.1f�
�
-19.6�
�
Q-7	20 marks


On the back of the previous page, write a complete C language program that gets two floating-point numbers, echoes them, and prints the larger of the two.  Your program should start with a complete Algonquin standard header, including the pseudocode algorithm, followed by the C code implementing your algorithm.





Write and check the pseudocode before you write the C code!





/* HEADER


 * Purpose: find the larger of two float numbers read from the keyboard


 * History: Ian D. Allen cst8110 answer sheet 97/03/22


 * Inputs: two numbers


 * Outputs: the larger of the two numbers


 * Algorithm:


 * 	PUT “Enter two numbers”


 * 	GET Num1, Num2


 * 	PUT “You entered “ Num1 “ and “ Num2


 * 	IF Num1 > Num2


 * 		PUT Num1


 * 	ELSE


 * 		PUT Num2


 * 	ENDIF


 * 	END


 */


#include <stdio.h>





int main(void)


{


	double num1, num2;


	printf(“Enter two numbers: “);


	scanf(“%lf%lf”, &num1, &num2);


	printf(“You entered %f and %f\n”, num1, num2);


	printf(“The largest number is “);


	if( num1 > num2 )


		printf(“%f\n”, num1);


	else


		printf(“%f\n”, num2);


}


Q-8	10 marks


Classify according to the C language rules each of the following strings of characters by putting the appropriate classification  number  in the box provided:





a reserved word


a standard identifier


conventionally used as a constant macro name


an ordinary valid identifier


none of the above (invalid for a C language name)





�
floater�
�
4�
�
�
micro$oft�
�
5�
�
�
PUT�
�
3�
�
�
1E10�
�
5�
�
�
fscanf�
�
2�
�
�
My Program�
�
5�
�
�
MAX_ENTRIES�
�
3�
�
�
int�
�
1�
�
�
DoUbLe�
�
4�
�
�
a1b2�
�
4�
�



Q-9	2 marks


(Small Bonus Question)  Briefly and clearly define the following terms:





�
a variable�
�
a named location in memory�
�
�
a terminating condition�
�
the condition that causes a loop to terminate�
�



CST 8110 Midterm #2 - March 19, 1997		Page � PAGE �5�











