DRAFT by Ian D. Allen

cst8152-97s-midterm-1.doc
98/03/22 08:42

 Pages: 1

CST8152
June 9, 1997
Midterm #1
10:00
10:50
50 Minutes
010

Compilers
Ian D. Allen
50
40

Algonquin College

CST8152- Compilers
Midterm #1- June 9, 1997
10:00 - 10:50 - 50 Minutes
Lecture Section 010 - Ian D. Allen
Identification

Your name:
Ian D. Allen
Please Print Clearly

Your student ID:
cst8152-97s-midterm-1.doc
Your Lab Sect:
010

Instructions

· Read the whole test before you start. This test has 5 pages.
Find the easy questions. Do the things you know best first. You have 50 Minutes.

· Answer questions in the space provided, or on the back of the indicated page.
Hand in this test when you are finished.

· No calculators or other aids are permitted. This test is closed book.

· Raise your hand if you have questions. Do not leave your seat.

· You may not be able to complete the entire test.
Remain calm. Answer as much as you can.

Marking Scheme

This Midterm #1 is marked out of 50. That works out to one mark per minute. Use the number of marks to get a rough idea of how many minutes you should spend on a question, e.g. 10 marks means no more than 10 minutes:

Q-1
6 marks

Q-2
2 marks

Q-3
5 marks

Q-4
5 marks

Q-5
3 marks

Q-6
11 marks

Q-7
5 marks

Q-8
13 marks

Marks for each question are listed beside each question.

Midterms and class quizzes count together for 40% of your final grade.

Q-1 6 marks

· Name (in order) each of the three main parts of the front end (analysis phase) of a compiler.

· Briefly describe the purpose and function of this phase of the compiler.

· Give a C Language example of an error that would be detected by this part.

Name of first part:
Lexical Analyser - Scanner

Purpose/

Function:
Recognize lexemes (by grouping individual characters) and classify the lexemes into tokens for the Parser

C error:
12abc

Name of second part:
Syntax Analyser - Parser

Purpose/

Function:
recognize a correctly ordered sequence of tokens by building a Parse Tree representing the grammar of the input sentence

C error:
a b = 27 ;

Name of third part:
Semantic Analyser

Purpose/

Function:
ensure that the Parse Tree is meaningful; perform type checking, conversions, etc.

C error:
int array[12.34];

Q-2 2 marks

What two restrictions are placed on a Finite State Machine to make it a DFA?

1.
All outgoing edges labelled with an input character

2.
No two edges leaving a given state have the same label

Q-3 5 marks

True or false? Are the following regular expressions are exactly equivalent? The special symbol ß represents the empty string. Correct answers are worth 1 mark each. No answer is worth zero marks. Incorrect answers are worth minus 1 mark (-1) each.

T/F

a)
X?X*
X*
a)
T

b)
y*|z*
(y|z)*
b)
F

c)
a*b*
(ab)*
c)
F

d)
(P|Q|ß)*
(P|Q)*
d)
T

e)
(0|1)?
0?|1?
e)
T

Q-4 5 marks

Given the following regular expression describing a set of strings of digits:

0(1+2)?2(0|2)*0

[image: image1.wmf]0(1+2)?2(0|2)*0

S

1

0

2

2

0

1

2

0|2

Draw a DFA transition diagram that matches exactly this expression (and nothing else):

Q-5 3 marks

Put a check mark beside whichever of the following are valid strings as defined by the expression from the preceding question:.

0122020 T
1122200 F
01120 F

01212220 F
02220 T
1112200 F

011200 F
020 T
02210 F

Q-6 11 marks

The state-diagram of the FSM shown below was designed to recognize both unsigned integer and float numeric constants:

[image: image2.wmf]S

L|_

L|D|_

other

other

D

D

put it

back

put it

back

ID

INT

a) Construct a next-state table from the above diagram:

‘.’
‘+’|’-‘
‘E’
{digit}
{OTHER}

START
A
JUNK
JUNK
E
JUNK

A
FLOAT
FLOAT
B
A
FLOAT

B
ERR
C
JUNK
D
JUNK

C
ERR
ERR
ERR
D
ERR

D
FLOAT
FLOAT
FLOAT
D
FLOAT

E
A
INT
INT
E
INT

b) On the back of the previous page, write one short C Language function based on the above table that takes an input character and returns the appropriate table column-subscript in the above table.
Use this function prototype: int Column(char ch);

if(ch == ‘.’) return 0; if(ch == ‘+’ || ch == ‘-’) return 1;

if(ch == ‘E’) return 2; if(isdigit(ch)) return 3; return 4;

Q-7 5 marks

Draw a DFA transition diagram that recognizes both identifiers and integer constants. (Identifiers have the same format as in Lab assignment Two and Three.)

[image: image3.wmf]0(1+2)?2(0|2)*0

S

1

0

2

2

0

1

2

0|2

Q-8 13 marks

Print T in the box if the statement is True; print F if it is False. Correct answers are worth one mark each. No answer is worth zero marks. Incorrect answers are worth minus one mark (-1) each.

1.
Lexical analysis is recursive to be able to handle nested parentheses.
1)
F

2.
Scanners don’t know anything about the grammar of a language.
2)
T

3.
A successful parse means the input is semantically correct.
3)
F

4.
Finite State Machines can have an unlimited number of states.
4)
F

5.
A regular expression is a type of pattern used to classify lexemes.
5)
T

6.
You can change state in a DFA without reading any input character.
6)
F

7.
Transition Tables are indexed with current state and next state.
7)
F

8.
Syntax analysis handles type checking and type conversions, e.g. int to float.
8)
F

9.
Regular expressions can not be used to match strings of balanced parentheses.
9)
T

10.
0(00)* is a regular expression that matches only non-empty strings containing an odd number of zeroes.
10)
T

11.
(000)* is a regular expression that matches only strings containing an odd number of zeroes, including the empty string.
11)
F

12.
Finite State Machines can have only one edge leaving the same state labelled with the same label (character).
12)
F

13.
A DFA must have exactly one final (accepting) state.
13)
F

D

� EMBED MSDraw.Drawing.8 ���

� EMBED MSDraw.Drawing.8 ���

other

‘.’

‘-’

‘+’

‘E’

‘.’

digit

digit

digit

digit

digit

digit

other

other

other

E

other

START

 JUNK

FLOAT

INTEGER

B

C

A

CST8152 - Compilers - Section 010
Page 2 of 1

Midterm #1 - June 9, 1997

Ian D. Allen – Algonquin College

[image: image4.wmf]S

L|_

L|D|_

other

other

D

D

put it

back

put it

back

ID

INT

_952062692.unknown

_952063645.unknown

