	Algonquin College

	CST 8152 - Compilers

	Midterm #2 - March 26, 1997

	14:00 - 14:50 - 50 minutes

	Lecture Section 010 - Ian D. Allen

	Identification

Your name:�
Ian D. Allen�
Please Print Clearly�
 �
�
�
�
�
�
�
Your student ID:�
Professor�
Your Lab Section:�
010�
�
	Instructions

Look over the whole test before you start. Find the easy questions.�Do the things you know best first. You have 50 minutes.

Answer questions in the space provided.�Hand in this entire test when you are finished.

No calculators or other aids are permitted. This test is closed book.

Raise your hand if you have questions. Do not leave your seat.

You may not be able to complete the entire test.�Remain calm. Answer as much as you can.

	Marking Scheme

This midterm test is marked out of 100. That works out to two marks per minute.

Divide the number of marks by two to get a rough idea of how many minutes you should spend on a question, e.g. 20 marks means 10 minutes:

� TOC \o "3-3" \n �Q-1 6 marks

Q-2 2 marks

Q-3 8 marks

Q-4 4 marks

Q-5 6 marks

Q-6 4 marks

Q-7 6 marks

Q-8 30 marks

Q-9 18 marks

Q-10 16 marks

�

Marks for each question are listed beside each question.

Midterms and class quizzes count together for 40% of your final grade.

Your mark on this midterm is part of that 40%.

Q-1	�
6 marks

What are three goals of the error handler in a parser?

�
�
�
�
�
�
�
�
�
Q-2	2 marks

Of what use are reserved words to a predictive parser?

Q-3	8 marks

Name four distinct levels at which errors may occur in a program.

Give or describe a brief example of an error at each level.

�
Error Level�
Description or example�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
Q-4	4 marks

What is the difference between error recovery and error repair in a parser?

Q-5	6 marks

Name and describe very briefly three typical methods of error recovery used in compilers.

�
�
�
�
�
�
�
�
�
Q-6	4 marks

Define a C language struct that would hold the global data returned by the scanner() in Assignment 5. Explain briefly, beside each field, what each field holds.

Q-7	6 marks

Define a C language struct that would hold one element of the symbol table needed for Assignment 5. Explain briefly, beside each field, what each field holds.

Q-8	30 marks

On the back of the previous page, write a set of C language recursive descent parsing functions that recognize the grammar below:

<stmt> (ID ‘=’ <term> ‘;’

<term> ((‘-’ <factor>) | <factor>

<factor> (ID | CONST | ‘(’ <term> ‘)’

No semantic actions are required; the functions need only recognize the input. A failure to parse the input must result in a call to error(“message string") that will cause the compiler to exit immediately with an appropriate error message.

Assume the lexical scanner is named scanner(), the type of the current look-ahead token type is in a global variable named tokentype, and that the error exit function is named error().

(Use these two functions in your parser; do not write them yourself.)

Q-9	18 marks

Augment and rewrite the grammar of the preceding question in the space below, adding semantic action symbols in the correct places. Describe the action performed by each of the semantic action symbols you added to the grammar:

<stmt> (ID {enter} ‘=’ <term> {copy} ‘;’

<term> ((‘-’ <factor> {negate}) | <factor>

<factor> (ID {look&push} | CONST {push} | ‘(’ <term> ‘)’

{enter}: enter identifier in symbol table if not already there

{copy}: pop the value stack and copy the value into the symbol table at the location of the entered identifier

{negate}: pop the value; negate it; push it back

{look&push}: look up the identifier in the symbol table; get its value; push the value on the value stack

{push}: convert the constant to a number; push the number on the value stack

Q-10	16 marks

Define, briefly and in the space provided, the following terms in the context of compiling and parsing.

Give a small, accurate example to clarify the definition, if that helps you define it succinctly.

lexeme�
___�
�
token�
___�
�
look-ahead token�
___�
�
white space�
___�
�
predictive parsing�
___�
�
backtracking�
___�
�
recursive descent parsing�
___�
�
terminal symbol�
___�
�
non-terminal symbol�
___�
�
grammar production�
___�
�
semantic action symbols�
___�
�
translation scheme�
___�
�
top-down parsing�
___�
�
bottom-up parsing�
___�
�
value stack�
___�
�
unary minus�
___�
�

Answer to Programming: Q-8

<stmt> (ID ‘=’ <term> ‘;’

<term> ((‘-‘ <factor>) | <factor>

<factor> (ID | CONST | ‘(‘ <term> ‘)’

stmt()

{

	if(tokentype != ID)

		error(“missing ID”);

	scanner();

	if(tokentype != EQU)

		error(“missing ‘=’”);

	scanner();

	term();

	if(tokentype != SEMI)

		error(“missing ‘;’”);

	scanner();

}

term()

{

	if(tokentype == MINUS)

		scanner();

	factor();

}

factor(){

	switch(tokentype)

{

	case ID:

case CONST:

scanner();

break;

	case LPAREN:

		scanner();

		term();

		if(tokentype != RPAREN)

			error(“Missing ‘)’”);

		scanner();

		break;

	default:

		error(“expecting ID, CONST, or ‘(‘”);

	}

}

CST 8152 Midterm #2 - March 26, 1997		Page � PAGE �1�

