
CST8177

File Systems

Linux File Systems

Layout of the file system:

– Each physical drive can be divided into several
partitions

– Each partition can contain one file system

– Each file system contains:

1. boot block(s);
2. superblock;
3. inode list;
4. data blocks.

●A boot block may contain the bootstrap code that is
read into the machine upon booting.
●A superblock describes the state of the file system:

 how large it is;
 how many files it can store;
 where to find free space on the file system;
 who has ownership of it;
 and more.

●The inode list is an array of "information nodes"
analogous to the FAT (File Allocation Table) system or
VFAT in MS-DOS and Windows.
●data blocks start at the end of the inode list and
contain file data and directory blocks.

The directory "tree" usually spans many disks and/or
partitions by means of mount points. For example,
in many versions of Linux, there are pre-defined
mount points for floppy disks and CD-ROMs at
floppy and cdrom in /mnt. USB devices may be
mounted in /mnt or in /media. See also the files
fstab and mtab in /etc.

/dev/hda /dev/hdb /dev/hdc

/
(root)

/bin, /usr /hom e /var, /etc

Some Linux-supported File Systems
minix is the filesystem used in the Minix operating
system, the first to run under Linux. It has a number of
shortcomings, mostly in being small. It led to ext.
ext is now gone, completely replaced by ext2.
ext2 is a disk filesystem used by Linux for both
hard drives and floppies. ext2, designed as an extension to
ext, has in its turn generated a successor, ext3.
ext3 offers improved (in terms of speed and CPU
usage) combined with data security of the file systems
supported under Linux due to its journaling feature.
ext4 enhances ext3 and is now the default.
msdos is the filesystem used by MS-DOS and early
Windows. msdos filenames are limited to the 8 + 3 form.
vfat extends msdos to be compatible with
Microsoft Windows' support for long filenames. Often used
on USB keys for inter-system portability.

ntfs replaces Window's VFAT file systems with
reliability, performance, and space-utilization
enhancements plus features like ACLs, journaling,
encryption, and so on.
proc is a pseudo-filesystem which is used as an
interface to kernel data. Its files do not use disk space. See
proc(5).
iso9660 is a CD-ROM filesystem type conforming to
the ISO 9660 standard, including both High Sierra and
Rock Ridge.
nfs is a network filesystem used to access
remote disks, mostly on TCP/IP networks.
nfs4 is the current version of nfs.
smb is a network filesystem used by Windows.

Partition Structure
Boot Block(s)
Blocks on a Linux (and often a Unix) filesystem are 512
bytes in length, but may be longer or shorter. The blocks
are normally a power of 2 in size (512 is 2 to the 9th power).
Some systems use 1024 bytes (2 to the 10th) but 2048 and
4096 are also seen.
The first few blocks on any partition are reserved for a boot
program, a short program for loading the kernel of the
operating system and launching it. Often on Linux systems
it will be controlled by GRUB, allowing booting of multiple
operating systems. It's quite common to be able to boot
both Linux and a flavour of Windows.
Superblock
The boot blocks are followed by the unique superblock,
which contains information about the geometry of the
physical disk, the layout of the partition, number of inodes
and data blocks, and much more.

Inode Blocks
Disk space allocation is managed by thousands of inodes
(information node), which are created by the mkfs(1)
(“make filesystem”) command. Inodes cannot be
manipulated directly, but are changed by many commands,
such as touch(1), cp(1), mv(1), and rm(1), and can be
read by ls(1) and stat(1). Both chmod(1) and chown(1)
can change inode contents.

Data Blocks
This is where the file data itself is stored. Since a directory
is simply a specially formatted file, directories are also
contained in the many, many data blocks. An allocated data
block can belong to one and only one file in the system. If a
data block is not allocated to a file, it is free and available
for the system to allocate when needed.

Some parts of a super block
Inodes count - how many inodes
Blocks count - how many data blocks
Reserved blocks count - spare data blocks
Free blocks count - unused space
Free inodes count - unused inodes
First Data Block - address of 1st data block
Block size - size of a "block"
Mount time - when was it mounted
Write time - when it was last written
Mount count - how many mounts
Maximal mount count - max possible mounts
Magic signature - a superblock identifier
time of last check - last fsck
max time between checks - max time between fscks
First non-res. Inode - first non-reserved inode
size of inode structure - how big is an inode
volume name - volume label
dir where last mounted - where was it last mounted

Structure of an inode on the disk
Each file (that is, a unique collection of data blocks) has
only 1 inode, which completely defines the file except for
its name(s). The filenames are actually links in the
directory structure to the inode for the file.
A file of data may have many names, but only one inode.
Since filenames are only kept in the directory tree, any
directory entry is a link to the actual description of the
file, the inode.

Directory Tree Inode List Data blocks
1 or more names => an inode => the file contents

ext Sample

Sample Inode Fields
file type and permissions- mode flags
device number - relates to /dev types
number of links - hard link count
owners user id - UID
owners group id - GID
size in bytes - actual size
time of last Access - 3 time fields: atime
time of last Modify - mtime
time of status Change - ctime
number of disk blocks - number of blocks

List of data blocks - in sequence

Directory entry
Use the path of the directory plus the filename in a call as the
absolute path to the file.

The directory entry is basically just these fields:

● Inode number
● Filename

File location = <directory path> + / + <filename>

The first two directory entries are the . (self) and .. (parent)
entries, which are always present. For the / directory only, both
. and .. refer to the same inode number.

The link count field of an inode for a directory holds the number
of directory references to that inode. Therefore, the minimum
for a directory is a link count of 2 (self and parent's name entry)
and increases by 1 for each direct sub-directory.

inode number filename
201 .

150 ..

202 file1

203 file2

204 dir1

-- --

-- --

Sample directory dir-root

inode number filename
204 .

201 ..

207 dir1-1

208 dir1-2

-- --

-- --

-- --

Sample directory dir1

inode number filename
207 .

204 ..

209 file1

-- --

-- --

-- --

-- --

Sample directory dir1-1

inode number filename
208 .

204 ..

210 file1

-- --

-- --

-- --

-- --

Sample directory dir1-2

Access Permissions
● permissions are made up of "r", "w", "x", for read, write and

executable (access for directories), in 3 categories:
 user, group, and other

● permissions are changed by the chmod(1) command.
● Often represented in 3-digit octal numbers: 0755, 0644
● Can use symbolic notation: from 0666, the command
chmod g-w,o= <filename> results in 0640

● Permission “x” has different meanings:
● For files: executable
● For directories: access (axxess, if that helps).

Files
● A collection of data blocks, as listed in the inode
● If the list in an inode is full, a second (third, 4th, etc.) inode
is used for more data blocks
●A file's name is only in the directory (or in several
directories)
●Have as many links as they have names (hard links)

Directories
● A collection of data blocks, as listed in the inode
●Always contain at least two entries: "." (self) and ".."
(parent)
●Have 2 links plus the total number of its subdirectories
●The root directory is different in that the self and parent
entries are absolutely identical

Filenames
●A filename is the name field in a directory entry, and can
refer to a data file, a directory, or other things not yet seen.

Linking files
In Linux and Unix, a data file is a bunch of data blocks on
a disk, managed by an inode. Its name is stored only in
the directory. Or in many directories. This is the concept
of linking. Both "soft" (symbolic) links and "hard" links
can be made using the ln(1) command. Below we create
a second name for a file as a hard link:
Original file

System Prompt: ls -l
-rw-r--r-- 1 allisor allisor 0 D/T abc

Create hard link
System Prompt: ln abc h-abc

System Prompt: ls -l
-rw-r--r-- 2 allisor allisor 0 D/T abc
-rw-r--r-- 2 allisor allisor 0 D/T h-abc

Symbolic (soft) links don't create a second name like hard
links, they create an alias or shortcut to an existing name:

Create soft link
System Prompt: ls -l
-rw-r--r-- 2 allisor allisor 0 D/T abc
-rw-r--r-- 2 allisor allisor 0 D/T h-abc

System Prompt: ln -s abc s-abc

System Prompt: ls -l
-rw-r--r-- 2 allisor allisor 0 D/T abc
lrwxrwxrwx 1 allisor allisor 3 D/T s-abc -> abc
-rw-r--r-- 2 allisor allisor 0 D/T h-abc

Examine inodes
System Prompt: ls -i1
25263 abc
25263 h-abc
25265 s-abc

Remove original filename (not the file)
System Prompt: ls -l
-rw-r--r-- 2 allisor staff 0 D/T abc
lrwxr-xr-x 1 allisor staff 3 D/T s-abc -> abc
-rw-r--r-- 2 allisor staff 0 D/T h-abc

System Prompt: rm abc

System Prompt: ls -l
-rw-r--r-- 1 allisor staff 0 D/T h-abc
lrwxr-xr-x 1 allisor staff 3 D/T s-abc -> abc

Removing one hard link has no effect on another hard link,
but it can break a soft link so it no longer points to a file.
Here, the original file still exists although its name (which
was just another hard link) is gone. Its second name is still
there and provides access to the inode and data content.
The soft (symbolic) link s-abc, however, is now broken, and
is no longer of any use.

Link counts
Always: the number of times that inode's number appears
anywhere in the directory tree in that filesystem.

Directory: starts at 2, and adds one for every direct sub-
directory.

Sub-directory: increases its direct parent's link count by 1.

File: starts at 1, and increases by one for each hard link
(never increases for a soft link).

Hard link: another filename for a file, completely the same
as any other name for that file. Increases the file's link count
by 1. The file is removed only when the link count is zero.

Soft link: also known as a symbolic link is an alias or
shortcut to a file or directory. It has no effect on the file's
link count. The soft link contains a path and name for its
target, and is broken if that target is moved, renamed, or
deleted. Nothing happens to the target for any change to its
soft link(s) – no change to its link count.

