
Job and Process ManagementJob and Process Management

CST8177

Job and Process Management
• Topics to be covered

● Processes
• Definition of a process
• Different kinds of processes to manage on a

running system
● Process Management

• process management utilities / commands
• managing foreground & background

processes
● Managed processes

• cron daemon
• crontab - both file and command
• cron system processes
• at / atq / atrm
• nohup
• managing process nice levels

• In several situations, it is necessary to control current
processes. Some examples include:

● running a process in the background
• running other commands/processes while the

first one executes in the background
● executing process at a specified time and date

• running daily updates, weekly patches, and
monthly backups

● killing / restarting processes
• cleaning up deadlocked processes, stopping,

starting, or restarting a process currently
running on the system

• It is important to remember that most processes
submitted by a user will only run as long as the user
remains logged in.

In order to do anything in Linux, you must:
● start an application
● use/run a command or script
● point & click to an icon
● do something to get the system to work for you

As far as Linux is concerned, all of the above and
anything and everything that is happening at any
point in time causes a "process" to execute or
activate.
Upon logging in to the system, you actually end up
starting several processes:

● login process (X or otherwise)
● authentication process (may include PAM)
● shell process once authenticated (usually BASH)
● login scripts (/etc/profile scripts,
~/.bash_profile, etc)

• Even thought there might not be any users logged
into the system, no connection the outside world,
and no one at the console, there are ALWAYS
processes running in Linux, even if it is only the
kernel and the init daemon

• A Linux process consists of:
– a single running program
– a unique process identification number (PID)
– an environment in which to run

(current shell environment or sub-shell)
• Linux keeps track of processes using the PID, as

well as the relationship between them (child /
parent), not by the command names or user who
started it, although it tracks that info as well

• It also maintains information as to the relationship
between processes, if any (child / parent process)

• A parent process is simply a process that starts a new
child process. A new or child process inherits the
exported environment of its parent process

• A child process receives an exported copy of the
parent’s environment. Thus, any changes the child
makes to its environment does not automatically
affect the parent process

• Many commands allow for viewing or listing the
process currently running, and allow for examining
the process current state and relationship to other
processes.

• Managing these processes is one of the most
important tasks given any administrator.

• A process can exist in one of many states:
● Runnable

• on run queue, in effect one of currently
executing processes

● Sleeping
• waiting for event to occur to wake up and

react/start up
● Stopped

• not currently executing, waiting to be killed or
restarted

● Uninterruptable sleep
• cannot be woken until specific expected event

● Defunct (zombie) process
• just before a process dies, it notifies its parent

and waits for an acknowledgment If it never
receives it, its PID is not freed up but all other
resources are freed. Zombies can usually be
cleared by rebooting/restarting the system.

Process Display Commands
ps

● displays processes currently running on the system
Many options are available (see man pages)
Examples: ps -ef | less or ps aux | less

top
● displays processes currently running and some

information about resource usage for each process
free

● Displays memory (RAM) and swap usage and by what
vmstat

● Displays virtual memory usage and by what
pstree

● generates a tree-like structure of process parent/child
relationships

Managing Processes
• Processes can also be managed

● Foreground processes are interactive.
● Processes require you to wait until they are

done before using the prompt again.
● Background processes are non-interactive.

● Processes run in the background, while you
do other things; user generally cannot send
information to the process directly

A System Administrator may:
● stop or restart execution of a process

● Linux allows for direct control of a process status
● suspend a foreground process to background

● A suspended process can be restarted or stopped
● move a process to background or foreground

N.B.: output from background processes may show
up on the screen, but does not affect the current
information you are using

● terminate any process
● Linux allows for hard termination of any process and

its children. Terminating a child process does not
directly affect the parent, but terminating a parent
process might cause some grief to the child
process(es).

Ctrl-C (also seen as ^C)
● will terminate the process running in the foreground -

the process the keyboard can access. This is not the
same as ^Z! (but see kill -sigint)

kill -signal pid
● allows for stopping/killing/restarting any process or

daemon by sending its process ID (pid) a signal

kill -l
● List all the signals available

killall -signal processname

● allows for stopping/killing/restarting of all processes or
daemons matching the name given

Note: Killing a parent process may or may not also kill all
of its child processes. Killing a child process is not likely to
also terminate its parent process.

Ctrl-Z
● suspends a foreground process to background

(note that other Oses may use this as end-of-file on
stdin, but we use ^D for that purpose)

Don't use ^Z to terminate a process!

jobs [%jobid]
● lists all background or suspended processes

bg %jobid
● Resume the suspended process %jobid in the

background as if an & had been used to start it

fg %jobid
● moves process %jobid to the foreground

command1 options &
● runs command as background process

Background processing

• By using a & at the end of a command, the command(s)
in the line will be executed in the background, returning
the user immediately to the prompt.

• All output to stdout and stderr (usually the screen) will
be displayed normally, possibly interleaved with output
from other processes.

• Any requests from the background from stdin (usually
the keyboard) will blocked from reading and placed in a
stopped state.

• It is important to structure commands to be run in the
background to avoid these limitations and ensure the
proper execution of unattended commands.

The cron and anacron daemons
• System scheduling is done by the cron daemon, which

searches /var/spool/cron for crontab files named
after accounts in /etc/passwd; cron also searches
for /etc/anacrontab and the files in the /etc/cron.d
directory.

• cron examines all stored crontabs, checking each
command to see if it should be run in the current
minute.

• Each user can have their own crontab file, but it is
often restricted to the root account (see cron.allow
and cron.deny in crontab(1)).

• anacron runs commands with a frequency specified in
days. Unlike cron, it does not assume that the machine
is running continuously. Hence, it can be used on
machines that aren’t running 24 hours a day, to control
regular jobs as daily, weekly, and monthly jobs.

• anacron reads a list of jobs from a configuration file,
/etc/anacrontab (see anacrontab(5)). This file contains
the list of jobs that anacron controls. Each job entry
specifies a period in days, a delay in minutes, a unique job
identifier, and a shell command. It uses a very different
format from crontab(5).

SHELL=/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
RANDOM_DELAY=45
START_HOURS_RANGE=3-22

#days delay job-id command
1 5 cron.daily nice run-parts /etc/cron.daily
7 25 cron.weekly nice run-parts /etc/cron.weekly
@monthly 45 cron.monthly nice run-parts /etc/cron.monthly

Consider this entry in anacrontab:
#days delay job-id command
1 5 cron.daily nice run-parts /etc/cron.daily

Every day at 0300 (START_HOURS_RANGE=3-22) anacron will see if
the job cron.daily has been run. If not (it tracks the last date it
did run in a separate file), it waits for the 5-minute delay
specified plus a random delay between 0 and 45 minutes
(RANDOM_DELAY=45). It will then run the shell command nice.

This is a binary executable with the form:

nice [OPTION] [COMMAND [ARG]...]

In this case, nice has no options, and will run the shell script
run-parts with a priority of 10 (the default) instead of the 0 of a
typical process.

The script looks through the file /etc/cron.daily and executes
each program found there. My system at home has 12 entries
which run one at a time until all are done.

The other entries work much the same way, at weekly (7 days)
and monthly (which can be 28, 29, 30, or 31 days) intervals.

• The crontab file has a specific format (_ means space):
 Minute _ Hour _ Day of Month _ Month _ Day of
Week _ [username] _ command list

• * Both 0 and 7 represent Sunday
• Ranges of values can be specified using the dash (-).
• Comments can be placed in the crontab file by putting

the # symbol in front of them.
• Blank lines are allowed.

Minute 1 to 59

Hour 0 to 23

DOM 1 to 31

Month 1 to 12

DOW 0 to 7 *

Userid System crontab only

Command(s) Or script name

• All fields must contain a value of some valid kind
• Field are separated by one or more spaces
• Continuous periods are indicated with the asterisk (*).

In any given field, if no specific entry is required, the
asterisk may be used in that field to indicate that the
whole range is valid.

.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .--------- day of month (1 - 31)
| | | .------ month (1 - 12)
| | | | .--- day of week (0 - 6)
| | | | |
 0 6 1 * * /home/allisor/bin/payday "$(date)"
 1 6 15 * * /home/allisor/bin/payday "$(date)"

• The main crontab file /etc/crontab should
NEVER be edited manually; you don't want crond
to fail.

• Construct a crontab: as root, in /etc/cron.d; as a
user, in /var/spool/cron

• A user crontab file can be created by using the
standard editor (vi) to create a plain text file with
proper crontab fields as above, or using the
crontab command

• It is recommended to name the file something
distinctive (e.g. allisor.cron) and for it to be
stored in your home directory.

• The crontab file can then be submitted to the cron
daemon using the crontab command.

• The crontab command can also be used to add,
edit, list, and remove individual crontab files
submitted previously.

The crontab command

crontab [-u username] -e | -l | -r | file
-u user is the user login name; used only by root
-e edits the crontab file; created if needed
-l lists the crontab file content
-r deletes the crontab file
file submits the crontab file to the cron

daemon for placement in
/var/spool/cron/usename

crontab -l
lists contents of the current user's crontab file

crontab -u allisor -e
edits the crontab file for user allisor in vivi

crontab allisor.cron
submits the crontab file allisor.cron.cron to cron

crontab -r
remove the crontab file for the current user

Scheduling Processes

• System processes use the cron and anacron
capabilities to invokes processes and scripts
maintained in periodic directories:

/etc/cron.hourly (not used by anacron)
/etc/cron.daily }
/etc/cron.weekly } anacron
/etc/cron.monthly }

● Access to the cron and at systems can be managed
● /etc/cron.allow and /etc/cron.deny control

access to the cron system
● /etc/at.allow and /etc/at.deny control access to

the at commands at, batch, atq, and atr

Running Processes after logout

Processes running in the background by shell are usually
allowed to continue after logout. Non-redirected output is
lost, however.
nohup command

● allows for saving this output by appending it to the
nohup.out file in the user’s home directory.

● terminals need to shutdown with exit
at time

● specifies a time for a set of commands (read from stdin
with an at> prompt; ^D to end) to be run as the user,
whether the user is online or not.

atq
● lists pending at jobs for the user (root gets everyone)

atrm at-jobid
● removes specific at jobs by job number if owner or root

The at command

The at command can be used to submit single-run
jobs, scripts, or commands to the cron daemon to be
executed at a later time (anywhere from 10 minutes
to a few days). Anything having a more frequent
requirement than that or to be done on a regular
basis should be done through crontab.
at time

● specifies the time for commands to be run as the
user, whether the user is online or not.

● commands are read from stdin at an at> prompt
● non-redirected output is automatically mailed to

user’s local mail account
● used for one time run scenario only
● provides job number given when queued.

The at command

at [-f script] [-m -l -r] [time] [date]
-f script actual script name to submit
-l lists jobs waiting to run (same as atq))
-r jobnoremoves a job (same as atrmatrm))
-m mails the user when job is finished
time H, HH.MM, HH:MM, H:M format
date MonthDay format, day name, or todaytoday
 or tomorrow

at 3.00pm tomorrow -f /apps/bin/db_table.sh
● runs db_table.sh tomorrow afternoon at 3

at -l or atq
● lists pending at jobs for user

at -r at-jobid or atrm at-jobidat-jobid
● removes specific at jobs from user’s queue

The nohup command

• The nohup command can be used to submit jobs to
cron you don’t think can be completed by the time
you log out. The process will continue processing
even after you log out.

• This can be particularly useful for a long-running
tasks and/or when you can't wait around while the
command executes.

• nohup command & is the command structure to
accomplish this.

• If you DO log out of the terminal, any output from
the job will be redirected to a file called nohup.out
in your current directory by default.

• Terminals need to be closed with exit command.

Process Priority
• Processes are scheduled with a 0 (zero) priority by

default, unless the process itself is coded to select a
higher priority.

• Priority range from -20 (highest) to 19 (lowest)

nice [-n adjustment] command
● allows for fine tuning the priority when starting a

process or daemon on the system
● only root can decrease a process priority
● default value of 10 for -n if omitted

renice [-n pri] [-p pids] [-g pgrp] [-u user]
● Allows for altering current process priority
-n pri priority value as above
-p pids alter only listed processes priority, not any

child processes
-g pgrp alter the priority of an entire process group

