

CST8177

Scripting 3: How?

But First ...
How do you approach a scripting problem?
There are several steps to the process. In simplified form,
they include:

1.Analysis
2.Design
3.Building
4.Testing

Let us first have a good look at these steps.

Analysis
and

Design

Building

Testing

1. The Analysis Process
First of all, decide what the actual problem is that is to be
solved. Sounds simple, right? It may be, if it's a program
you need, and you have a good idea of what it needs to do.
It's not so simple if you're writing it for someone else, like
your boss (or your professor). You will have to carefully
read whatever you've been given, perhaps checking back
to clarify parts, until you have a full understanding.
In either situation, lay down the full requirements in
writing. Include in this document considerations you have
carefully gone over, including:

● What inputs are needed? Be sure to consider both
your own files, system or user file, the command-line
arguments, and stdin. If you need a config file,
decide what will go in it.

● What kind of normal output will there be? Consider
stdout, log files, and system and user files. Define
the format if you can.

1. The Analysis Process

● What kind of errors can be expected? What about
unexpected errors, like missing files? Consider every
possible (and some impossible) eventuality. Write
down the conditions for the error and decide what
debug information you will need to see. If it's also
going to a system log file, make sure you follow the
local style standard.

● Rough out, perhaps a list of bullet points, what steps
need to be done, in the sequence you expect they
will be needed. Consider decisions points and loops,
but only in an informal manner.

Write a how-to-use document for anyone who might be
using your script. Show the command line, its options and
arguments, and any prompts the script will make to the
keyboard user.

2. The Design Process
You may need to have your Analysis approved, or at least
reviewed by a class-mate. This is the time to make sure
you are proceeding in the correct direction.
Now you can expand the roughed-out steps into full PDL
(Problem Description Language). This describes WHAT
the script is doing and WHY it's doing it. You do not need
to describe HOW it's to be done -- that comes later.
Define the all input data the script will need, if any.
Choose a file name if it's your own file, otherwise write
down the name of the system or user file. Specify both the
content and the layout (the format of the content). Don't
overlook command-line options and arguments.
Do the same for all the output and the error messages.
Actually write the text for each one. If you will be using
the system logging facility, state the facility and priority to
be used. If this is an addition to the logging rules, specify
also the name and location of the (new?) log file.

2. The Design Process
You will now have a well thought-out plan for your script.
The next step is to walk through walk through the PDL,
step by step, with reference to your input and output. You
can update the PDL at this time as you uncover steps you
have missed, or glossed over too simply.
Finally, create and document a Test Plan. The goal of your
Test Plan is to ensure that you can turn over the Plan, the
final script, and the how-to document to a class-mate and
expect them to be able to produce correctly-formatted test
results.
To make this possible (and to simplify your own execution
of the Test Plan), design at this time any special files or
tools, even other scripts, that will make testing simple and
repeatable. Reduce the amount of typing on stdin that's
required by redirecting a file as input, and also redirect
stdout and stderr into separate files for automatically
checking the results.

3. The Building Process
It's time to write the script. By now you have developed a
solid understanding of what problem is being solved and
what the script is going to do to solve it.
As a first step, construct any files that are needed, such as
a configuration file. You're going to test each chunk of
script as you write it, so have this in place at the start.
Now convert the PDL to script. This is the HOW of the
script, where the WHAT and WHY of the PDL become
actual scripting statements. You do it a few lines at a time;
many people turn the PDL into comments, and leave it
throughout the script to describe what the next bit of
script does.
You may have to turn to one side, so to speak, to write a
tiny test script. This will help you determine how you can
correctly build some of the complex parts of the script. On
the other hand, you can keep useful script fragments to
cut-and-paste into a script you are building.

3. The Building Process
Convert the PDL to script by repeating the following steps
until it's all done:

● Write a few lines of script based on the PDL;
● Save your script file; you may wish to use a method
that allows you to keep the last-good-version (save
the current working copy under a test name; copy
the 2 generations of backups only when this one has
tested clean and error-free);

● Run the script in debug mode, carefully making sure
each chunk of script behaves as expected before
moving to the next;

● Make full and complete fixes of any script errors. If
necessary, go back to your Design material and fix it
as well.

Once you have completed this translation from PDL, run
through the whole script as you mean it to be used.

4. Test process
Now it's the time to run the Test Plan, fixing errors until
your script passes all the tests. This is often called the
Alpha test, where the developer(s) of the script establish
that what they have built operates as expected, even in
error cases.
If you can (unlikely, I expect), get a class-mate who
unfamiliar with your script to run the Test Plan from the
how-to-use document. This is a lost art, it appears, that of
the Beta test. In times gone by, companies would have
quality assurance people who did this for a living.
The next step is to distribute the script, any required files,
and the how-to document to a small set of live users. This
may still happen in the Real World, since I still see
references to Release Candidates.
Assuming all of the above proceeds smoothly, you can now
release your script to the world, if that was the goal.

An example
This might be a casual or informal description from the
Analysis of one of the script requirements:

kick user out unless root
Notice the brevity and simplicity. In the Design, turn this
into good PDL - - describing WHAT and WHY, not HOW:

IF user is not root
 DISPLAY error message

EXIT
ENDIF

There are a few things to note here. The keywords that
make this PDL are shown in UPPER CASE, in an effort to
increase their visibility. For much the same reason, the
PDL is indented for the contents of the IF-block. And each
control structure, the IF-ENDIF here, is paired to mark
both its beginning and the end.

An example
Here, then, is the actual code -- the HOW:

#! /bin/bash
kick user out unless root
if [$UID != 0]; then
 echo Must be root user
 exit 1
fi

In some ways it's not too unlike the PDL. It looks almost
like a one-to-one replacement, but that's not always the
case.

An example
You might wonder why it use UID and not USER?
Surely comparing $USER to "root" can't be all that
different from comparing $UID and 0. It's because UID has
been set to be read-only, but the USER variable can be
changed by any user.
Prompt$ echo UID is $UID and USER is \"$USER\"
UID is 500 and USER is "allisor"
Prompt$ USER="root"
Prompt$ echo UID is $UID and USER is \"$USER\"
UID is 500 and USER is "root"
Prompt$ UID=0
bash: UID: readonly variable
Prompt$ echo UID is $UID and USER is \"$USER\"
UID is 500 and USER is "root"

An example
That was fairly painless, I hope. You have just learned 5
components of PDL:

1. IF -- ENDIF is a control structure, using the
result of a comparison to make a choice. It comes in
two more flavours that we'll look at soon. It, like all
control structures, is paired to mark both the start
and end of the block of statements.

2. Statements inside control structures (often called
blocks) are indented for visibility.

3. There are 6 comparison operators for numbers.
They are: == != > >= < <=

4.DISPLAY (or PRINT or SHOW) are used as output
statements.

5.EXIT leaves the script.

An example
You have even learned 8 components of scripts:

1. The hash-bang line: it must be the very first line in
the script, since the #! serves to tell the shell that
this is a script. The rest of that line is the absolute
path to the script program, /bin/bash for us.

2. There can be blank lines anywhere you need them
for readability. Don't be afraid to use a few.

3. A comment is marked by a #. You can use a full line
comment as here, or put a comment on a statement
line after the script part:

exit 1 # leave now
4. This is a specific form of the if-statement. We'll

look at the general form later. The fi (yes, that's if
spelled backwards. Sigh) is the end of the if-block,
just like the PDL.

An example
4. The indenting is also just like the PDL, and for the

same reason: to improve the readability for us
humans. Be sure to indent properly.

5. There are 6 comparison operators for numbers.
They are: == != > >= < <= Actually there is a
whole other set for scripts in addition to these, but
we'll address that later.

6. You're already familiar with the echo(1) built-in,
although it has features you haven't used. Have a
look at the printf(1) command for formatted output.

7. The exit statement terminates the current shell.
You may already use it to return after an su. It
takes one number(or numeric variable) as an
argument to return to the caller for status.
By convention, 0 is OK and any other number (it
should be >0) shows some sort of error condition.

A Test Script
Let's take the code snippet we've been looking at and turn
it into a test script. The only real change is the addition of
a couple of echo statements:

#! /bin/bash
echo current UID is $UID
if [$UID != 0]; then
 echo Must be root user
 exit 1
fi
echo UID is root
exit 0

I have saved this in a test directory so I can run a few
tests, both as a user and as root. Since I've already
decided to use UID and not USER, since UID is protected,
there's no reference to the global USER variable.

A Test Script
Here a short test run:
[allisor@mycroft tmp]$./test-uid
current UID is 500
Must be root user
[allisor@mycroft tmp]$ su
Password:
[root@mycroft tmp]# ./test-uid
current UID is 0
UID is root
[root@mycroft tmp]# exit
exit
[allisor@mycroft tmp]$

Did it work correctly?
Without an Analysis of the requirements and a Test Plan,
how can I tell?

