
CST8177

bash Scripting
Chapters 13 and 14 in Quigley's

"UNIX Shells by Example"

Signals and the TRAP statement
● Page 935 - 941 in Quigley.
● Various signals can be trapped and your own script

code executed instead of the system's normal code.
Although there are up to 64 signals available, we will
consider only a few of them:

● SIGHUP (signal 1 or HUP: hang up) is issued for a
remote connection when the connection is lost or
terminated; it's also used to tap a daemon on the
shoulder, to re-read its config files.

● SIGINT (signal 2 or INT) is the keyboard interrupt
signal given by Control-C.

● SIGKILL (signal 9 or KILL) cannot be ignored or
trapped.

● SIGTERM (signal 15 or TERM) is the default signal used
by kill(1) and killall(1).

Signal-like events and TRAP
● The EXIT event (also "signal" 0) occurs upon exit from

the current shell.
● The DEBUG event takes place before every simple

command, for command, case command, select
command, and before the first command in a function.
See also the description of extdebug for the shopt
built-in for details of its effect.

● The ERR event takes place for each simple command
with a non-zero exit status, subject to these
conditions: it is not executed if the failed command
is part of a while, until, or if condition expression,
or in a && or || list, or if the command’s return value
 is being inverted via !. See also errexit for details.

● The RETURN event occurs each time a shell function or
a script executed with the . (that's a dot) or source
built-in returns to its caller.

Signals and the TRAP statement
● You can set a trap:
 trap 'statement; statement; …' event-list

● The trap statement list is read by the shell twice, first
when it's set (it's set once only, before it is to be used,
and stays active until you clear it).

● It's read a second time when it's executed.
● If you enclose the statement in single quotes,

substitutions only take place at execution time.
● If you use double quotes, substitutions will take place

upon both readings.
● If statement is omitted, the signals (use - (dash)) for

all) are reset to the default.
● If statement is a null (empty) string, the signals

specified will be ignored.

Signals and the TRAP statement

● To set a trap for SIGINT:
 trap 'statement; statement; …' INT

● To turn it off again:
trap INT

● To prevent any SIGINT handling (ignore signals):
trap " " INT

● Be cautious in trapping SIGINT: how will you stop a
run-away script?

● To see what traps are set (you can see traps for
specific events by listing the names or numbers):

trap -p
● To list the names for signals 1 to SIGRTMAX:

trap -l # that's an ell, not a one

Trap Sample Script
#! /bin/bash
declare -i count=0

set trap to echo, then turn itself off
trap 'echo -e \\nSIGINT ignored in $count; \
 trap sigint;' sigint

loop forever
while ((1 == 1)); do
 let count++
 read -p "$count loop again? "
done

if loop ends, display count
echo loop count $count
exit 0

System Prompt$./my-trap
1 loop again?
2 loop again?
3 loop again?
4 loop again? y
5 loop again? n
6 loop again?
7 loop again? q
8 loop again? help
9 loop again? ^C
SIGINT ignored in 9

10 loop again? q
11 loop again? y
12 loop again? n
13 loop again? ^C
System Prompt$

Functions in bash

● You will learn that functions are exceptionally useful,
and it's good to see them in bash.

● Pages 927 - 935 in Quigley
● A function is a group of regular shell-script

statements is a self-contained package.
● You define a function as:

function somename ()
{

statement
statement
 …

}

● And you call it by using the name as if it were a
normal command.

bash Functions

A function does not need to return a result, but it may do
so in 3 ways (perhaps all in the same function):

1. set a new value into a variable previously defined
outside the function;

2. Use a return statement to set the value of $?; it
can also use an exit to set $?, but that will also
exit from the calling script which may not be what
you want.

3. write the results to stdout.

Functions

● Function scope is from the point the function is
defined to the end of the file (that is, it must be
defined before you can use it). Generally, that means
that all functions precede the main body of the script.

● As a result, previously-written functions are often
included in a script using the source (also . (dot))
statement near the top of a script.

● You can define local variables to be used only inside
the function, while your normal variables from outside
the function can always be used.

● If you wish, you can pass arguments into a function as
positional parameters ($1 and so on; this is by far the
recommended approach).

Functions
● You may have noticed that traps behave like a special

form of function. They are called (or invoked) by an
event and consist of a collection of command
statements. This is not an accident.

● To unset (delete or remove) a function:
unset -f functionname

● To list defined function names (note: my system
seems to have over 400 functions, of which I have
only defined 4 of my own):

declare -F | less
● To list functions and definitions:

declare -f [functionname]

A Simple Sample
The rot13 script is an implementation of the Caesar code
message encryption. It simply rotates the message 13
characters through the alphabet, retaining case. No
numbers or punctuation characters are affected.
rot13 ()
{
 echo "$*" | \
 tr '[a-mA-Mn-zN-Z]' '[n-zN-Za-mA-M]'
 return 0
}
As you can see, rot13 accepts command-line arguments
which it passes via echo through a translate (tr) command
that will print the result on stdout.
Entering rot13 sheesh produces furrfu on stdout, while
the reversed rot13 fuurfu displays sheesh.

When to write a function
There are a lot of scripting situations where writing a
short function of your own is a good idea.

Some of these include:
● Some common activity that will be used frequently
● Part of a larger script that will be repeated at least 2 or

3 times, perhaps slightly differently each time
● An uncommon activity used only once in a while, but you

don't want to have to remember the details
● A tricky bit of logic – write once, use over and over, even

if its not often
● A part of a large script that will only be used once
● The "Lego block" approach to scripting – develop

functions that can be "plugged together" to form a
complete script with a little "glue"

Sample function
START perms
 SOURCE file of functions
 SOURCE file of configuration info

 SET dir to arg 1 if present
 SET dir to . if no dir

 PUT config file values

 FOR each file in the directory
 CALL my-format with the current file name
 END FOR

 EXIT 0
END perms

Sample function
START my-format USING $1
 COMMAND for directory/file
 EXTRACT permissions
 PUT directory/file and permissions
 RETURN 0
END my-format

Data Dictionary (Global)

Name Type Value Purpose
CMD string ls -ld Command to execute

DELIM string " " Delimiter for cut

DIR string undefined Directory to use

FIELD integer 1 Field number for cut

Sample function
In file ./config:
CMD='ls -ld'
FIELD=1
DELIM=' '

In file ./include:
function my-format ()
{
 echo file \"$DIR/$1\" permissions \
 $($CMD $DIR/$1 \
 | cut -f $FIELD -d "$DELIM")
 return 0
}

Note file permissions:
-rw-rw-r--. 1 allisor allisor 31 date config
-rw-rw-r--. 1 allisor allisor 121 date include

#! /bin/bash

source my files
source ./include # function here
source ./config # variables here

set default directory to $1 or .
DIR=${1:-$DIR}
DIR=${DIR:-.}

show config values
echo Config: CMD = \"$CMD\"\; \
 FIELD = \"$FIELD\"\; DELIM = \"$DELIM\"

do some stuff with the function
for x in $(ls $DIR); do
 my-format $x
done

exit 0

Execution of the script
System Prompt$./perms
Config: CMD = "ls -l"; FIELD = "1"; DELIM = " "
file "./config" permissions -rw-rw-r--.
file "./include" permissions -rw-rw-r--.
file "./perms" permissions -rwxrwxr-x.
System Prompt$

What's happening?
Both ./include and ./config are brought into the perms
script as though they had been written there.
Then each time through the for loop, the next filename is
passed to the function my-format. Once it has done its
work, control returns to the calling script, perms, where
it goes through the loop again until the list is exhausted.

The getops Function

● Many scripts depend heavily upon command line
arguments, or positional parameters, so writers
frequently use the getopts function to make
processing them easier.

● It's often used for the -x form (the "dash" form) of
options because of all the many combinations.

● For example, consider a command which can have
options -x, -y, and -z in any order and any
combination (like -xz and -zx), giving at least 29 (I
counted) valid combinations. You don't want to write
script code for each possibility!

getops

getopts optionstring variable [argumentlist]
● It will use the positional parameters unless the optional

argumentlist is supplied.
● getopts puts the matching option character into your

variable and puts the number of the next char into
OPTIND.

● If the option is not matched, variable is set to "?" and an
error message is written to stderr (unless ":" is the first
character of optionstring to suppress that behaviour).

● Dash arguments that have arguments themselves (like
cut -f 5) can be followed by a colon in optionlist, and
the next item in the parameter list will be assigned to
OPTARG for use in the script.

● Processing stops when the first non-dash argument is
found.

getops Example (./goe)

#! /bin/bash
 declare opt_char
 while getopts :xy:z opt_char; do

 while getopts :xy:z opt_char; do #repeated
 case $opt_char in
 x) echo $opt_char found
 ;;
 y) echo $opt_char found \
 with \"$OPTARG\"
 ;;
 z) echo $opt_char found
 ;;
 *) echo option error index \
 $(($OPTIND - 1)) = \"$opt_char\"
 exit 1
 ;;
 esac
 done

 if (($OPTIND > $#)); then
 echo All args have been processed
 else
 echo First non-dash arg is \
 \$$OPTIND = \"$(eval echo -n \$$OPTIND)\"
 fi
 exit 0

System Prompt$./goe
All args have been processed
System Prompt$./goe x
First non-dash arg is $1 = "x"
System Prompt$./goe -x
x found
All args have been processed
System Prompt$./goe -x -y some-stuff -z
x found
y found with "some-stuff"
z found
All args have been processed
System Prompt$./goe -x more-stuff
x found
First non-dash arg is $2 = "more-stuff"

