
Midterm Solution
more shell

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 midterm solution

 debugging shell scripts

 exit

 case

 is stdin a terminal?

 the command that does nothing

 integer arithmetic

2

 -v option for bash/sh
◦ sh –v myscript

◦ shell will print each line as its read

◦ loop statements are printed once

 -x option for bash/sh
◦ sh –x myscript

◦ shell will display $PS4 prompt and the expanded
command before executing it

◦ each loop iteration is shown individually

CST8177 – Todd Kelley 3

 exit causes the shell to exit with the exit
status of the last command that was run

 exit N causes the shell to exit with exit
status N

CST8177 – Todd Kelley 4

case test-string in

 pattern-1)

 command1

 command2

 ;;

 pattern-2)

 command3

 command4

 ;;

 *)

 command5

 ;;

esac

CST8177 – Todd Kelley 5

 the patterns are globbing patterns matched
to the test-string

 So we tend to use the * pattern as a catchall,
if all other matches fail, but that's not
required

 case statement exit status is the exit status of
the last command in the matching block, or 0
if no blocks match

CST8177 – Todd Kelley 6

 We can use the vertical bar to specify
alternative patterns:

case "$character" in

 a|A)

 echo "The character is A"

 ;;

 [bB])

 echo "the character is B"

 ;;

 *)

 echo "The character is not A or B"

 ;;

esac

CST8177 – Todd Kelley 7

 A script can test whether or not standard
input is a terminal

[-t 0]

 What about standard output, and standard
error?

CST8177 – Todd Kelley 8

 Occasionally you'll see a command called :

 : arguments

 That command expands its arguments and
does nothing with them, resulting in a 0 exit
status

CST8177 – Todd Kelley 9

 examples of using expr command:

a=`expr 3 + 4`

a=`expr 3 – 4`

a=`expr 3 * 4`

a=`expr 13 / 5` # integer division: 2

a=`expr 13 % 5` # remainder: 3

 increment the integer in variable a

a=`expr $a + 1`

CST8177 – Todd Kelley 10

