CST8177 - Linux II

Midterm Solution more shell Todd Kelley
kelleyt@algonquincollege.com

Today's Topics

- midterm solution
- debugging shell scripts
- exit
- case
- is stdin a terminal?
- the command that does nothing
- integer arithmetic

Debugging shell scripts

- -v option for bash/sh
- sh -v myscript
- shell will print each line as its read
- loop statements are printed once
- -x option for bash/sh
- sh -x myscript
- shell will display \$PS4 prompt and the expanded command before executing it
- each loop iteration is shown individually

exit command

- exit causes the shell to exit with the exit status of the last command that was run
- exit N causes the shell to exit with exit status N

case statement

```
case test-string in
    pattern-1)
        commandl
        command2
        ; ;
    pattern-2)
        command3
        command4
        ; ;
    *)
        command5
        ; ;
esac
```


case statement continued

- the patterns are globbing patterns matched to the test-string
- So we tend to use the * pattern as a catchall, if all other matches fail, but that's not required
- case statement exit status is the exit status of the last command in the matching block, or 0 if no blocks match

case statement continued

- We can use the vertical bar to specify alternative patterns:
case "\$character" in
a|A)
echo "The character is A"
; ;
[bB])

```
echo "the character is B"
;;
```

*)
echo "The character is not A or B" ; ;
esac

Is stdin a terminal?

- A script can test whether or not standard input is a terminal
[-t 0]
- What about standard output, and standard error?

The command that does nothing

Occasionally you'll see a command called :
b : arguments

- That command expands its arguments and does nothing with them, resulting in a 0 exit status

Doing integer arithmetic

- examples of using expr command:
a=`expr \(3+4\) - a=`expr 3-4` a=`expr 3 * 4` a=`expr 13 / 5` \# integer division: 2 a=`expr 13 \% 5` \# remainder: 3
- increment the integer in variable a
a=`expr \$a + 1`

