
Processes
Todd Kelley

kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 From last time:
◦ is stdin a terminal?

◦ the command that does nothing

◦ integer arithmetic

 processes

 nice

 ps, pstree, top

 job control, jobs, fg, bg

 signals, kill, killall

 crontab, anacron, at

 elinks, mail

2

 Any program we run executes as a process

 Processes have the following attributes
◦ a process id: PID

◦ a parent process id: PPID

◦ a nice number (related to priority)

◦ controlling terminal

◦ Real (RUID) and effective (EUID) user id

◦ Real (RGID) and effective (EGID) group id

 Also:
◦ a current working directory

◦ a umask value

◦ an environment (values of environment variables)

CST8177 – Todd Kelley 3

 We have already been using the ps command
to print out information about processes
running on the system

 ps –ef or ps aux piped to grep is common

 there are many options for printing specific
info in a specific way: man ps or ps -h

 ps –l # long format

 ps –f versus ps –fw

CST8177 – Todd Kelley 4

 top displays some system information, and a
list of processes, ordered on a column

 the most important keys are ?, h, and q
(according to man page)

 load average: 5min, 10min, 15min

 load average is number of processes running
or in uninterruptable state (disk IO, others)

 no exact rule, but if load average is more
than 1-1.5 times the number of CPUs, the
machine is overloaded in some way and you
have a problem (your mileage may vary)

CST8177 – Todd Kelley 5

 pstree: connects parents and children in a
pictorial display

 free: memory usage

 vmstat: processes, memory, and more

CST8177 – Todd Kelley 6

 Runnable: ready to go

 Sleeping: choosing not to go

 Stopped: suspended indefinitely, as in ^Z

 Uninterruptable Sleep: waiting on a disk I/O
operation, or similar

 Zombie or Defunct: process has completed,
but it's still in the process table waiting for
parent to take action

CST8177 – Todd Kelley 7

 Each process has a priority, which you can
control with the nice command

 -20 highest priority, 19 lowest priority

 nice [–n increment] command

 nice –n 10 long_command # 10 is default

 only superuser can specify negative
increments

 For processes already running:
◦ renice priority –p PID or renice –n increment –p PID

CST8177 – Todd Kelley 8

 your shell can run several processes for you
at once

 we can run commands in the background
◦ command &

 we can put a running command in the
background
◦ ^Z

 what jobs are there?
◦ jobs

 resume a stopped job
◦ bg %N # background, where N is a job number

◦ fg %N # foreground

CST8177 – Todd Kelley 9

 When we type ^C when a process is running
in the foreground, the process receives a
SIGINT signal, which by default would cause a
process to terminate.

 SIGINT: ^C (default), similar to SIGTERM

 SIGHUP: terminal has been closed

 SIGTERM: clean up if necessary, then die

 SIGKILL: die right now

 We can send these signals to a process with
the kill command

CST8177 – Todd Kelley 10

 kill –SIGNAL PID #send SIGNAL to process PID

 When system shuts down, it
◦ sends all processes a SIGTERM

◦ waits a few seconds (5 or 10)

◦ sends all processes a SIGKILL

 Why not just wait for the SIGTERM to finish?

 Because SIGTERM can be handled, possibly
ignored, it's optional

 SIGKILL cannot be handled – it works unless
the process is in an uninterruptible state
(maybe disk I/O, NFS)

CST8177 – Todd Kelley 11

 If kill -9 PID (kill –SIGKILL PID) as root doesn't
kill the process, it is in an uninterruptible
state

 if uninterruptible processes don't become
interruptible, there may be a system problem
(bad disk, misconfigured NFS filesystem, etc)

 Reboot may be the only way to get rid of
them

CST8177 – Todd Kelley 12

 summary of all the POSIX signals:
http://en.wikipedia.org/wiki/Unix_signal

CST8177 – Todd Kelley 13

 To run a command regularly and
automatically, we use the cron facility

 The cron daemon process every minute
checks to see if commands specified in
crontab files need to be run

 for now, we're concerned only with our user
crontab files, which are
◦ /var/spool/cron/*

◦ for example, /var/spool/cron/user1 is user1's
crontab file

CST8177 – Todd Kelley 14

 full details from man 5 crontab

◦ recall that is how we read section 5 of the manual (section 5 of the
manual is file formats)

 man crontab will give info about the crontab command (in
default section 1 of the manual)

 create a file containing your cron instructions (see next slide),
naming that file, say, myuser.crontab

 run the crontab command to submit that file's contents to be
your user's crontab file: crontab < myuser.crontab

 alternatively, you can edit your user's live crontab file:
crontab -e

CST8177 – Todd Kelley 15

• All fields must contain a value of some valid kind

• Field are separated by one or more spaces

• Asterisk (*) indicates the entire range

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .--------- day of month (1 - 31)

| | | .------ month (1 - 12)

| | | | .--- day of week (0 – 7, both 0 and 7 are Sunday)

| | | | |

 0 6 1 * * /home/user/bin/mycommand

 1 6 15 * * /home/user/bin/anothercommand > /dev/null 2>&1

crontab format (man 5 crontab)

 ranges with dash are allowed: first-last

 * means every value first-last

 lists are allowed: first,second,third

 steps indicated with '/' are allowed after
ranges or asterisk:
◦ */2 means every second one

◦ 1-7/2 means 1,3,5,7

CST8177 – Todd Kelley 17

 crontab –l
◦ list the contents of your current live crontab file

 crontab –e
◦ edit the contents of your current live crontab file

 crontab
◦ read the new contents of for your crontab file from

stdin

 crontab –r
◦ remove your current crontab file

CST8177 – Todd Kelley 18

 see man 5 crontab for example crontab

 really, see the example: man 5 crontab

 things to watch out for
◦ input for your commands (they run without anyone to type

input)

◦ output of commands (if you don't (re)direct output, the
output will be emailed – better if you handle it)

◦ error output of commands (same as for output above)

◦ summary: it's best if your commands in a crontab are
arranged with input and output already handled, not relying
on output to be emailed by cron

◦ if you want to email, do it explicitly in your command
somehow, and test that command before putting it into
your crontab

CST8177 – Todd Kelley 19

 at command runs a set of commands at a later time
 at command takes a TIME parameter and reads the set of

commands from standard input

 example (run commands at 4pm 3 days from now)

◦ at 4pm + 3 days

 rm –f /home/usr/foo

 touch /home/usr/newfoo

 ^D

 other at-related commands: atrm, atq

 for details: man at

 as with cron, you must be aware of how your
commands will get their input (if any) and what will
happen to their output (if any)

CST8177 – Todd Kelley 20

