
More Scripting and Regular Expressions

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 lynda.com

 stty (pending from last week)

 .bashrc versus .bash_profile

 More shell scripting

 Regular Expression examples

2

 Some students are already comfortable with
the command line

 For those who aren't, yet another tutorial
source that might help is Lynda.com

 All Algonquin students have free access to
Lynda.com

 Unix for Mac OSX users:
http://www.lynda.com/Mac-OS-X-10-6-tutorials/Unix-for-Mac-OS-X-
Users/78546-2.html

CST8177 – Todd Kelley 3

 .bash_profile is loaded once by a login shell

 .bashrc is loaded by non-login shells

 There are cases where there never is a login shell
◦ ssh remote-server.com <some_command>

 So the method we'll use in this course:
◦ .bash_profile does nothing except load .bashrc

◦ .bashrc keeps track of things that should be done only
once

CST8177 – Todd Kelley 4

[-z "$PS1"] && return

if ["${_FIRST_SHELL-}" = ""] ; then

 export _FIRST_SHELL=$$

 PATH=$PATH:$HOME/bin

 # here we put things that

 # should be done once

fi

here we put things that need to be

done for every interactive shell

CST8177 – Todd Kelley 5

Contains just one line:

[-f $HOME/.bashrc] && . $HOME/.bashrc

Or equivalently, these three lines instead

if [-f $HOME/.bashrc]; then

 . $HOME/.bashrc

fi

CST8177 – Todd Kelley 6

 For the impatient, you can read ahead
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst81
77/13w/notes/000_script_style.html

 From now on, at the top of all our shell scripts, we put

#!/bin/sh -u

UTF-8 (international) script header

PATH=/bin:/usr/bin ; export PATH

umask 022

unset LC_ALL # unset the over-ride

variable

LC_COLLATE=en_US.utf8 ; export LC_COLLATE # sort by character

set

LC_CTYPE=en_US.utf8 ; export LC_CTYPE # handle multi-byte chars

LANG=en_US.utf8 ; export LANG # legacy version of LC_CTYPE

CST8177 – Todd Kelley 7

http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html

 http://teaching.idallen.com/cst8177/13w/notes/000_character_sets.html

 Not all computer users use the same alphabet

 When we write a shell script, we need to ensure that it handles text
properly in the presence of i18n

 In the beginning, there was ascii, a 7 bit code of 128 characters

 Now there’s Unicode, a table that is meant to assign an integer to
every character in the world

 UTF-8 is an implementation of that table, encoding the 7-bit ascii
characters in a single byte with high order bit of 0

 The 128 single-byte UTF-8 characters are the same as true ascii
bytes (both have a high order bit of 0)

 UTF-8 characters that are not ascii occupy more than one byte

 Locale settings determine how characters are interpreted and
treated, whether as ascii or UTF-8, their ordering, and so on

CST8177 – Todd Kelley 8

http://teaching.idallen.com/cst8177/13w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/13w/notes/000_character_sets.html

 A locale is the definition of the subset of a user's environment that
depends on language and cultural conventions.

 It is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behavior
of components of the system.

 Category names correspond to the following environment variable
names (we deal with just the first two in our shell scripts):
◦ LC_CTYPE: Character classification and case conversion.

◦ LC_COLLATE: Collation order.

◦ LC_MONETARY: Monetary formatting.

◦ LC_NUMERIC: Numeric, non-monetary formatting.

◦ LC_TIME: Date and time formats.

◦ LC_MESSAGES: Formats of informative and diagnostic messages and interactive
responses.

CST8177 – Todd Kelley 9

 Three kinds of matching
1. Filename globbing

 used on shell command line, and shell matches these

 patterns to filenames that exist

 used with the find command

2. Regular expressions, used with

 vi

 sed

 awk

 grep

3. Extended regular expressions

 egrep or grep –E (not emphasized in this course)

 perl regular expressions (not in this course)

CST8177 – Todd Kelley 10

 testing regular expressons with grep on stdin
◦ run grep 'expr' on the standard input

◦ use the single quotes to protect your expr from the
shell

◦ grep will wait for you to repeatedly enter your test
strings (type ^D to finish)

◦ grep will print any string that matches your expr, so
each matched string will appear twice (once when
you type it, and once when grep prints it)

◦ unmatched strings will appear only once where you
typed them

◦ type ^D to finish

CST8177 – Todd Kelley 11

 examples (try these)
◦ grep 'ab' #any string with a followed by b

◦ grep 'aa*b' #one or more a followed by b

◦ grep 'a..*b' #a, then one or more anything, then b

◦ grep 'a.*b' #a then zero or more anything, then b

◦ grep 'a.b' # a then exactly one anything, then b

◦ grep '^a' # a must be the first character

◦ grep '^a.*b$' # a must be first, b must be last

 Let's try some in vi and awk

CST8177 – Todd Kelley 12

