CST8177 - Linux |l

More Scripting and Regular Expressions

Todd Kelley
kelleyt@algonquincollege.com

CST8207 - Todd Kelley



Today’s Topics

» lynda.com

» stty (pending from last week)
» .bashrc versus .bash_profile
» More shell scripting

» Regular Expression examples




Lynda.com

» Some students are already comfortable with
the command line

» For those who aren't, yet another tutorial
source that might help is Lynda.com

» All Algonquin students have free access to
Lynda.com

» Unix for Mac OSX users:

http://www.lynda.com/Mac-0S-X-10-6-tutorials/Unix-for-Mac-0S-X-
Users/78546-2.html

CST8177 - Todd Kelley



.bashrc versus .bash_profile

» .bash_profile is loaded once by a login shell

» .bashrc is loaded by non-login shells

» There are cases where there never is a login shell
> ssh remote-server.com <some_command>

» So the method we'll use in this course:

° .bash profile does nothing except load .bashrc

- .bashrc keeps track of things that should be done only
once

CST8177 - Todd Kelley



.bashrc

[ -z "S$PS1" ] && return

if [ "${ FIRST SHELL-}" = "" ]
export FIRST SHELL=S$S$
PATH=SPATH: SHOME /bin
# here we put things that
# should be done once

; then

f1
# here we put things that need to be
# done for every interactive shell

CST8177 - Todd Kelley



.bash_profile

Contains just one line:

[ -f SHOME/.bashrc ] && . SHOME/.bashrc
Or equivalently, these three lines instead

if [ -f SHOME/.bashrc ]; then
SHOME/ .bashrc

fi

CST8177 - Todd Kelley



Shell scripting

» For the impatient, you can read ahead
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst81

/77/13w/notes/000_script_style.html|
» From now on, at the top of all our shell scripts, we put

#!/bin/sh -u

# UTF-8 (international) script header
PATH=/bin:/usr/bin ; export PATH
umask 022

unset LC ALL # unset the over-ride
variable

LC COLLATE=en US.utf8 ; export LC COLLATE # sort by character
set

LC CTYPE=en US.utf8 ; export LC CTYPE # handle multi-byte chars
LANG=en US.utf8 ; export LANG # legacy version of LC CTYPE

CST8177 - Todd Kelley



http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html
http://elearning.algonquincollege.com/coursemat/alleni/idallen/cst8177/13w/notes/000_script_style.html

Internationalization (i18n)

» Not all computer users use the same alphabet

» When we write a shell script, we need to ensure that it handles text
properly in the presence of i18n

» In the beginning, there was ascii, a 7 bit code of 128 characters

» Now there’s Unicode, a table that is meant to assign an integer to
every character in the world

» UTF-8 is an implementation of that table, encoding the 7-bit ascii
characters in a single byte with high order bit of O

» The 128 single-byte UTF-8 characters are the same as true ascii
bytes (both have a high order bit of 0)

» UTF-8 characters that are not ascii occupy more than one byte

» Locale settings determine how characters are interpreted and
treated, whether as ascii or UTF-8, their ordering, and so on

CST8177 - Todd Kelley


http://teaching.idallen.com/cst8177/13w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/13w/notes/000_character_sets.html

What is locale

» A locale is the definition of the subset of a user's environment that
depends on language and cultural conventions.

» It is made up from one or more categories. Each category is

identified by its name and controls specific aspects of the behavior
of components of the system.

» Category names correspond to the following environment variable
names (we deal with just the first two in our shell scripts):
- LC_CTYPE. Character classification and case conversion.
LC_COLLATE: Collation order.
- LC_MONETARY: Monetary formatting.
LC_NUMERIC: Numeric, non-monetary formatting.
- LC_TIME: Date and time formats.

LC_MESSAGES: Formats of informative and diagnostic messages and interactive
responses.

CST8177 - Todd Kelley




Regular Expressions (again)

» Three kinds of matching
1. Filename globbing
used on shell command line, and shell matches these
patterns to filenames that exist
used with the find command
2. Regular expressions, used with
* Vi
- sed
- awk
© grep
3. Extended regular expressions
- egrep or grep -E (not emphasized in this course)
- perl regular expressions (not in this course)

CST8177 - Todd Kelley

10



Testing Regular Expressions

» testing regular expressons with grep on stdin
> run grep 'expr' on the standard input

- use the single quotes to protect your expr from the
shell

- grep will wait for you to repeatedly enter your test
strings (type AD to finish)

- grep will print any string that matches your expr, so
each matched string will appear twice (once when
you type it, and once when grep prints it)

- unmatched strings will appear only once where you
typed them

CST8177 - Todd Kelley

11



Regular Expressions to test

» examples (try these)
> grep 'ab’ #any string with a followed by b
- grep 'aa*b' #one or more a followed by b
- grep 'a..*b' #a, then one or more anything, then b
- grep 'a.*b'  #a then zero or more anything, then b
- grep 'a.b’  # a then exactly one anything, then b
> grep 'Ad’ # a must be the first character
- grep 'Aa.*b$' # a must be first, b must be last

» Let's try some in vi and awk

CST8177 - Todd Kelley 12



