
ssh keys, yum, ntp, rsync
Todd Kelley

kelleyt@algonquincollege.com

CST8177– Todd Kelley 1

 CST8177 Linux Operating Systems II

 Mon 22-Apr-13 12:00 14:00 CA105A,B,C

CST8177 – Todd Kelley 2

 ifconfig to find your VM's ip address so you can ssh to it

 ssh key login

 creating many new users

 passwd command examples vipw vigr visudo

 yum

 ntp

 tar ssh/rsync

 disks

 partitioning

 formatting filesystems mkfs

 /etc/fstab

 mounting filesystems mount command

3

 run the /sbin/ifconfig command

 on your new install, you'll have only your root
account at first:

ifconfig

eth0 Link encap:Ethernet HWaddr 00:0C:29:14:F8:93

 inet addr:192.168.180.207 Bcast:192.168.180.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe14:f893/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1112 errors:1099 dropped:0 overruns:0 frame:0

 TX packets:4178 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:210424 (205.4 KiB) TX bytes:624100 (609.4 KiB)

 Interrupt:19 Base address:0x2024

CST8177 – Todd Kelley 4

 key-based logins are more secure than
password logins

 you run ssh to log in from a client to a server

 on the client, you have a private and public
key pair (with passphrase)

 on the server, you put your public key into

~/.ssh/authorized_keys

 when you log in from the client to the server,
you're prompted for your key's passphrase

CST8177 – Todd Kelley 5

 Generating a keypair on Linux client:
$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/tgk/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/tgk/.ssh/id_rsa.

Your public key has been saved in /home/tgk/.ssh/id_rsa.pub.

The key fingerprint is:

81:27:65:81:26:fb:1b:6c:71:ae:a0:9c:58:5b:64:3b tgk@localhost.localdomain

The key's randomart image is:

+--[RSA 2048]----+

| .+. |

| . o+ |

| +o o |

| + .o.. |

| o + +S |

| . E = . |

| + = + + |

|. = o |

| |

+-----------------+

[tgk@localhost ~]$

CST8177 – Todd Kelley 6

 install your (client) public key to the server

 you're running this command on the client

client$ ssh-copy-id username@example.com

 now you should be able to log in with the
key, and you'll need to give your passphrase
for your key

CST8177 – Todd Kelley 7

 http://www.howtoforge.com/ssh_key_based_logins_putty

CST8177 – Todd Kelley 8

 by default, useradd creates the new user's
home directory

 the new home directory is populated with the
contents of /etc/skel/

 shadow password suite configuration in

 /etc/login.defs

 the defaults for useradd are

/etc/default/useradd

CST8177 – Todd Kelley 9

 to create one user:

useradd –c "Full Name" user001

chmod 750 /home/user001

passwd user001 # and enter passwd by hand

CST8177 – Todd Kelley 10

 there are various possible strategies for
creating many new user accounts

 one possibility:
◦ use Linux utilities and/or your own script to create a set of

commands for each new user (one-off script):

useradd -c "User 1" user001 #create the user

usermod –p u75jjvrue5B92 user001 #assign passwd

chmod 750 /home/user001 || exit 1 #homedir perms

 If you were creating 100 users, you'd have
300 commands in your one-off script

CST8177 – Todd Kelley 11

 another possibility: the "newusers" command

 man newusers

 newusers takes a file containing info about
the accounts you want to create

 the input file for creating the accounts is in
the same format as the /etc/passwd file:

uncle:3uncle4:503:503:Uncle Tom:/home/uncle:/bin/bash

aunt:3aunt4:504:504:Aunt Betty:/home/aunt:/bin/bash

CST8177 – Todd Kelley 12

 bad idea: set blank password for user
◦ passwd –d username # shouldn't need to do this

◦ sets blank password field in /etc/shadow

◦ login still prompts for password, so you'd need to jump
through hoops to allow for login with blank password

◦ su will not prompt for passwd

CST8177 – Todd Kelley 13

 disable passwd authentication for username
◦ passwd –l username # puts ! in front of passwd

◦ passwd –u username # undoes the above

 a ! placed in front of the passwd entry of the
shadow file ensures that nothing anybody can
type will successfully match this passwd entry

 * in the passwd entry is similar, and used for
accounts for which should never use passwd
authentication

 SSH keys will still work without passwd

CST8177 – Todd Kelley 14

 passwd –n mindays

 passwd –x maxdays

 passwd –w warndays

 passwd –i expireaccountdays

 example: allow changing password no more
than once per day, force changing every 90
days, warning 10 days in advance of expiry,
and if they don't change their password
within 2 days after expiry, disable account
(not even ssh key login will work):

 passwd –n 1 –x 90 –w 10 –i 2 username

CST8177 – Todd Kelley 15

 chage –d 0 username

 thereafter, the first time the user logs in, they
will be forced to enter their password

 all the other aging parameters are unchanged
(maxdays, lastday, mindays, etc)

CST8177 – Todd Kelley 16

 Don’t edit files when there’s a command that updates the file
◦ e.g. “usermod –c ‘New User’ newuser” instead of changing gecos field in /etc/passwd by hand

 If you must edit the file, don't edit it directly when there's a
command for that purpose (vi will be the default editor):

◦ visudo # edit the /etc/sudoers file

◦ vipw # edit the /etc/passwd file

◦ vigr # edit the /etc/group file

 normally can specify a different editor in EDITOR or VISUAL
environment variables (see man)

 can set these in .bashrc, export them!

 Command line examples (either of these will work):

bash$ EDITOR=nano visudo # call visudo with EDITOR=nano

or

bash$ export EDITOR=nano

bash$ visudo

CST8177 – Todd Kelley 17

 http://teaching.idallen.com/cst8207/13w/no
tes/810_package_management.html

 yum can install software packages for you,
retrieving them from a repository over the
network

 performs dependency analysis: if the package
you want to install depends on another
package, it will install that too

 can also query installed packages, remove
packages, update packages, etc

 run with root privileges

CST8177 – Todd Kelley 18

 Examples: (see "man yum" for details)
◦ yum install ntp

 install the package "ntp" and its dependencies

◦ yum update

 update all currently installed packages

◦ yum update "nt*" # quote the glob from the shell

 update all packages that match the glob

◦ yum –v repolist

◦ yum list installed

◦ yum list available

◦ yum list # combination of two above

◦ yum search fortune

CST8177 – Todd Kelley 19

 we shouldn't need to change these, but if
you're curious...

 repository files are in /etc/yum.repos.d
◦ CentOS-Base.repo

 main CentOS repository mirrors

◦ CentOS-Media.repo

 uses the DVD in your drive as a repository

CST8177 – Todd Kelley 20

 we'll be using the ntp package to keep our
CentOS clocks synchronized with a time
server, such as 1.centos.pool.ntp.org

 ntpd, the ntp daemon, will look after keeping
our clocks accurate

 /etc/ntp.conf configures the daemon, and all
we need to do is arrange for the daemon to
start:
bash$ chkconfig ntpd on

bash$ chkconfig –list ntpd

CST8177 – Todd Kelley 21

 now that the ntpd daemon is configured to
start upon entering runlevels 2,3,4,and 5,
let's check whether it's running:

bash$ service ntpd status

ntpd is stopped

 we are in runlevel 3 but we haven't actually
entered that runlevel since we ran chkconfig

 we'll start it manually this one time:

bash$ service ntpd start

CST8177 – Todd Kelley 22

 start ntpd in 10 seconds

 meanwhile, print the date every second

 You COULD do this if you wanted to see what
effect ntpd has on the date

bash# (sleep 10; service ntpd start) &

bash# while true; do

> date

> sleep 1

done

CST8177 – Todd Kelley 23

 create an archive of a directory
◦ tar cvzf mydirectory.tgz mydirectory

 c: create an archive

 v: verbose, print the filenames as their added

 z: compress the archive

 f: use the following as the filename for the archive

 extract an archive
◦ tar xvzf mydirectory.tgz

 x: extract an archive

 z: uncompress the archive

CST8177 – Todd Kelley 24

 print listing of an archive without extracting
◦ tar tvzf mydirectory.tgz mydirectory

 t: print a listing

 v: verbose, like a long listing

 z: the archive is compressed

 f: use the following as the filename for the archive

 In each of the above examples
◦ exactly one of t, c, or x is mandatory

◦ f with an archive name is mandatory

◦ z: is mandatory if archive is, or is to be,
compressed

◦ v: is optional for verbosity

CST8177 – Todd Kelley 25

 sometimes you'll see this outdated idiom

bash$ tar cf – adir | (cd /some/dir; tar xf -)

 that's a reliable way to copy adir and
everything below it to /some/dir

 a file name of "-" means stdin if we're
extracting, x, or stdout if we're creating, c.

 the parentheses mean run in a subshell

 the cd /some/dir changes the dir of that
subshell, and the tar xf – extracts the archive
read from the stdin

 rsync is the modern way to do this

CST8177 – Todd Kelley 26

 scp behaves much like the familiar cp
command, but with remote capabilities

 The arguments (source or destination) can
optionally be for a remote file/directory

 http://teaching.idallen.com/cst8207/13w/notes/015_file_transfer.html

 A remote argument has a colon in it

 To copy local passwd file to kelleyt's home
directory on a remote computer
◦ scp /etc/passwd kelleyt@cst8177.idallen.ca:

 Notice the colon in the remote dest argument

CST8177 – Todd Kelley 27

http://teaching.idallen.com/cst8207/13w/notes/015_file_transfer.html
http://teaching.idallen.com/cst8207/13w/notes/015_file_transfer.html
mailto:kelleyt@cst8177.idallen.ca

 Whatever follows the colon is relative to the
home directory on the remote side (unless it's
an absolute path and therefore not relative)

 use -p option to preserve timestamps, modes
(analogous to -p with cp command)

 Use CAPITAL P option to specify a port
◦ if you're at a McDonalds and you want to copy to

myuser's home directory on the CLS:

◦ scp -P 443 localfile.txt myuser@cst8177.idallen.ca:

◦ again, notice the colon in the remote argument

◦ notice that port option is -p for ssh, -P for scp

CST8177 – Todd Kelley 28

mailto:myuser@cst8177.idallen.ca

 absolute local to absolute remote file foo
◦ scp -p /etc/passwd user@remote.com:/home/user/foo

 relative local file to absolute remote directory
◦ scp -p myfile user@example.com:/home/user/

 directory and its contents to remote directory
◦ scp -rp mydir user@example.com:somedir

 absolute remote file to local home dir
◦ scp user@example.com:/etc/passwd ~

 relative remote file to current local dir
◦ scp user@example.com:somedir/foo .

CST8177 – Todd Kelley 29

mailto:user@example.com:/home/user/
mailto:user@example.com:somedir
mailto:user@example.com:/etc/passwd
mailto:user@example.com:/etc/passwd
mailto:user@example.com:/etc/passwd
mailto:user@example.com:/etc/passwd
mailto:user@remote.com:somedir/foo
mailto:user@remote.com:somedir/foo

 rsync behaves similarly to scp

 only one rsync argument can be remote

 Example copy local (relative) to local (absolute):

 rsync –aHv adir /some/dir
◦ a: archive mode, preserve permissions, timestamps,

etc

◦ H: preserve hard links

◦ v: verbose

◦ if "dir" exists, "/some/dir/adir" will result

◦ if "dir" does not exist, "/some/dir" will be created
and contain "adir", "/some/dir/adir" will result

CST8177 – Todd Kelley 30

 be careful with a trailing slash on the source

 a trailing slash on source has special
meaning: copy the contents of the directory

 these are the same
◦ rsync –avH /src/foo /dst/

◦ rsync –avH /src/foo/ /dst/foo

 copy contents of src directory to dst directory
◦ rsync -avH /src/ /dst # /src/* in /dst/

 copy src directory to dst directory
◦ rsync -avH /src /dst #end up with /dst/src

CST8177 – Todd Kelley 31

 rsync can copy across the network

rsync –avH dir/. kelleyt@remote.example.com:dir

 that will copy/synchronize the local "dir" with the
remote "dir" in kelleyt's home dir on the remote
machine named “remote.example.com”

 notice the colon in the remote argument

 if you forget the colon, you do a local copy to

a file with '@' in its name

CST8177 – Todd Kelley 32

 after the colon, you can specify a relative path
(relative to the home directory) or an absolute
path

rsync –av adir/. kelleyt@192.168.0.193:/etc/adir

 that example uses an absolute path at the
destination end, and an IP address instead of
a hostname

CST8177 – Todd Kelley 33

 the other direction works too

rsync kelleyt@192.168.0.193:/etc/passwd .

 that copies the remote file /etc/passwd to the
current directory (.), resulting in ./passwd

 this time, we are not using archive mode

 this time, we are using an IP address instead
of a fully qualified domain name

CST8177 – Todd Kelley 34

 rsync compares source and destination and
minimizes the number of bytes that need to
be copied to update the destination

 rsync algorithm is designed to transfer only
the parts of a file that have changed

 notice the "speedup" in the summary when
you use the "-v" option

CST8177 – Todd Kelley 35

