
review
Todd Kelley

kelleyt@algonquincollege.com

CST8177– Todd Kelley 1

}  CST8177 Linux Operating Systems II
}  Mon 22-Apr-13 12:00 14:00 CA105A,B,C

CST8177 – Todd Kelley 2

}  assignment09 questions
}  assignment10 questions
}  a bit more sshd
}  a bit more httpd
}  review

3

}  SSH
◦  configure port
◦  configure logging

}  HTTP
◦  install it
◦  chkconfig it
◦  start it
◦  firewalling
◦  play with default document
◦  configuration file to change its behaviors

CST8177 – Todd Kelley 4

Course Objectives
l  To increase your command line skills
l  To add to your knowledge of Linux tools
l  To learn basic system administration
l  To learn how to design, write, and debug a script
l  To provide the required background for the successor

courses in later semesters

Brief Course Outline
1. Control system processes
the kernel process table; the boot process; log system
services; user processes; runlevel tools; task scheduling

2. Control user access to system resources
user and group accounts; a password policy; file permissions

3. Setup and maintain file systems
volumes; single and multiple file systems; file system integrity

Brief Course Outline

4. Automate administrative tasks using scripting
operating system interface; process automation bash scripts

5. Other automation tools (time permitting)
stream editor (sed) and awk

Practical –
Lab assignments 25%
Online Quizzes 10%

Total-P 35%
Theory –

Mid-term exam 1 10%
Mid-term exam 2 15%
Final exam (2 hours) 40%

Total-T 65%
Grand Total 100%

Commands, programs, scripts, etc.
Command
A directive to the shell typed at the prompt. It could be a
utility, a program, a built-in, or a shell script.
Program
A file containing a sequence of executable instructions.
Note that it's not always a binary file but can be text (that
is, a script).
Script
A file containing a sequence of text statements to be
processed by an interpreter like bash, Perl, etc.

Every program or script has a stdin, stdout, and stderr by
default, but they may not always be used.

Filter
A program that takes its input from stdin and send its
output to stdout. It is often used to transform a stream of
data through a series of pipes.
Scripts are often written as filters.
Utility
A program/script or set of programs/scripts that provides
a service to a user. (ls, grep, sort, uniq, many many more)
Built-in
A command that is built into the shell. That is, it is not a
program or script as defined above. It also does not
require a new process, unlike those above.

History
A list of previous shell commands that can be recalled,
edited if desired, and re-executed.
Token
The smallest unit of parsing; often a word delimited by
white space (blanks or spaces, tabs and newlines) or
other punctuation (quotes and other special characters).
stdin
The standard input file; the keyboard; the file at offset 0
in the file table.
stdout
The standard output file; the terminal screen; offset 1 in
the file table.

stderr
The standard error file; usually the terminal screen; offset
2 in the file table.
Standard I/O (Numbered 0, 1, and 2, in order)
stdin, stdout, and stderr
Pipe
Connects the stdout of one program to the stdin of the
next; the "|" (pipe, or vertical bar) symbol.
A command line that involves this is called a pipeline
Redirect
To use a shell service that replaces stdin, stdout, or stderr
with a regular named file.

Process
http://teaching.idallen.com/cst8207/12f/notes/770_processes_and_jobs.html

l A process is what a script or program is called while it's being
executed. Some processes (called daemons) never end, as they
provide a service to many users, such as crontab services from crond.
l Other processes are run by you, the user, from commands you enter
at the prompt. These usually run in the foreground, using the screen
and keyboard for their standard I/O. You can run them in the
background instead, if you wish.
l Each process has a PID (or pid, the process identifier), and a parent
process with its own pid, known to the child as a ppid (parent pid).
You can look at the running processes with the ps command or
examine the family relationships with pstree.

Some history examples
l  To list the history:

 System prompt> history | less
l  To repeat the last command entered:

 System prompt> !!
l  To repeat the last ls command:

 System prompt> !ls
l  To repeat the command from prompt number 3:

 System prompt> !3
l  To scroll up and down the list:
 Use arrow keys
l  To edit the command:
 Scroll to the command and edit in place

Redirection
l Three file descriptors are open and available
immediately upon shell startup: stdin, stdout, stderr
l These can be overridden by various redirection
operators
l Following is a list of most of these operators (there are
a few others that we will not often use; see man bash
for details)
l Multiple redirection operators are processed from left
to right: redir-1 redir-2 may not be the same as redir-2
redir-1
l If no number is present with > or <, 0 (stdin) is
assumed for < and 1 (stdout) for >; to work with 2
(stderr) it must be specified, like 2>

Operator Behaviour
Individual streams

< filename Redirects stdin from filename
> filename Redirects stdout to filename
>> filename Appends stdout onto filename
2> filename Redirects stderr to filename
2>> filename Appends stderr onto filename

Combined streams
&> filename Redirects both stdout and stderr to

filename
>& filename Same as &>, but do not use
&>> filename Appends both stdout and stderr onto

filename
>>& filename Not valid; produces an error

Operator Behaviour
Merged streams

2>&1 Redirects stderr to the same place as
stdout, which, if redirected, must
already be redirected

1>&2 Redirects stdout to the same place as
stderr, which, if redirected, must
already be redirected

Special stdin processing ("here" files),
mainly for use within scripts

<< string Read stdin using string as the end-of-
file indicator

<<- string Same as <<, but remove leading TAB
characters

<<< string Read string into stdin

Command aliases
l To create an alias (no spaces after alias name)

 alias ll="ls -l"
l To list all aliases

 alias or alias | less
l To delete an alias

 unalias ll
l Command aliases are normally placed in your
~/.bashrc file (first, make a back-up copy; then use vi to
edit the file)
l If you need something more complex than a simple
alias (they have no arguments or options), then write a
bash function script.

Filename Globbing and other Metacharacters
Metacharacter Behaviour

\ Escape; use next char literally
& Run process in the background
; Separate multiple commands

$xxx Substitute variable xxx
? Match any single character
* Match zero or more characters

[abc] Match any one char from list
[!abc] Match any one char not in list
(cmd) Run command in a subshell
{cmd} Run in the current shell

Simple Quoting
l No quoting:

System Prompt$ echo $SHELL
/bin/bash

• Double quote: "
System Prompt$ echo "$SHELL"
/bin/bash

l Single quote: '
System Prompt$ echo '$SHELL'
$SHELL

Observations:
Double quotes allow variable substitution;
Single quotes do not allow for substitution.

Escape and Quoting
l Escape alone:

Prompt$ echo \$SHELL
$SHELL

l Escape inside double quotes:
Prompt$ echo "\$SHELL"
$SHELL

l Escape inside single quotes:
Prompt$ echo '\$SHELL'
\$SHELL

Observations:
Escape leaves the next char unchanged;
Double quotes obey escape (process it);
Single quotes don't process it (treat literally)

Filespecs and Quoting
System Prompt$ ls
a b c
System Prompt$ echo *
a b c
System Prompt$ echo "*"
*
System Prompt$ echo '*'
*
System Prompt$ echo *
*
Observation:

Everything prevents file globs

Backquotes and Quoting
System Prompt$ echo $(ls) # alternate
a b c
System Prompt$ echo `ls` # forms
a b c
System Prompt$ echo "`ls`"
a
b
c
System Prompt$ echo '`ls`'
`ls`
Observations:

 Single quotes prevent command processing

CST8177 – Todd Kelley 24

25

inode 399303
drwxr-xr-x
access time
modification time
change time
…etc…
. inode 399303

.. inode 131074

examples.desktop inode 399306

Assignments inode 501292

…etc… …etc…

inode 399306
-rw-r--r--
access time
modification time
change time
…etc…
data blocks for
the file
there is no
filename here
the filename(s)
(at least one) are
stored in
directories

CST8177 – Todd Kelley 26

inode 399303
drwxr-xr-x
access time
modification time
change time
…etc…
. inode 399303

.. inode 131074

examples.desktop inode 399306

Assignments inode 501292

…etc… …etc…

Need read (r) on
directory to read this
column

Need search (x) on
directory to access this
column

Need write (w) and
search (x) on directory
to change first column

CST8177 – Todd Kelley 27

inode 399306
-rw-r--r--
access time
modification time
change time
…etc…
data blocks for
the file
there is no
filename here
the filename(s)
(at least one) are
stored in
directories

Need read (r) and
search (x) on directory
this file is in to access
this info on the file’s
inode

Need read (r) / write
(w) / execute (x) on file
to read / write / execute
this file (contents)

}  create a command with basic scripting
◦  put “#!/bin/sh –u” at very beginning of file
◦  put commands in file
◦  make file executable

}  put the file in a directory that is in $PATH
}  http://teaching.idallen.ca/cst8207/12f/notes/400_search_path.html

}  Not a good idea to put “.” in PATH
}  Security implications of putting “current directory” , “.” in path
}  PATH=.:$PATH
}  demonstration of how the bad guy can arrange for you to inadvertently

run their malicious commands as you

 CST8177 – Todd Kelley 28

}  When we customize our shell behavior by
◦  setting environment variables (for example, export
PATH=/bin:/usr/bin:/sbin)
◦  setting aliases (for example alias ll=“ls –l”)
◦  setting shell options (for example, shopt –s failglob or
shopt –s dotglob)
◦  setting shell options (for example, set –o noclobber)
we make these customizations permanent using bash startup
files

CST8177 – Todd Kelley 29

}  http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html
}  ~/.bash_profile is sourced by your login shell when you

log in
◦  the things we set up here are done only once when we log in
◦  export-ed variables here are inherited by subshells
◦  we source ~/.bashrc here because login shells do not source it
◦  some GUI's log you in without sourcing ~/.bash_profile

}  ~/.bashrc is sourced by each non-login subshell, interactive
or not
◦  here we set up things that are not inherited by the login shell
◦  inside this file, at the top, we check whether it’s an interactive or non-

interactive shell:
[-z "$PS1"] && return

◦  we set aliases in this file
◦  we set options configured with shopt and set in this file

CST8177 – Todd Kelley 30

[-z "$PS1"] && return
if ["${_FIRST_SHELL-}" = ""] ; then
 export _FIRST_SHELL=$$
 PATH=$PATH:$HOME/bin
 # here we put things that
 # should be done once
fi
here we put things that need to be
done for every interactive shell

CST8177 – Todd Kelley 31

Contains just one line:

[-f $HOME/.bashrc] && . $HOME/.bashrc

Or equivalently, these three lines instead

if [-f $HOME/.bashrc]; then
 . $HOME/.bashrc
fi

CST8177 – Todd Kelley 32

}  more generally, we have
pattern{action}
}  awk reads its input line by line, and for each

line that matches pattern, the action is
taken

}  If no pattern is specified, then every line
matches

}  if no action is specified, the default action is
print (so awk /this/ is like grep this)

CST8177 – Todd Kelley 33

}  BEGIN is a special pattern that matches just
before the first actual input line

}  END is a special pattern that matches just
after the last actual input line

}  $0 denotes the whole input line
}  $1 denotes the first field in the input line
}  $2 denotes the second field in the input line,

and so on
}  NF denotes the number of fields
}  FS denotes the field separator (default whitespace)

CST8177 – Todd Kelley 34

}  two main ways to set the input field separator
}  as an argument on the command line
awk –F: ‘/tgk/{print $7}’ /etc/passwd
◦  this would print field 7, the user’s shell, for any

password record that contains tgk
}  Or, we could set the FS variable in a BEGIN

action
awk ‘BEGIN{FS=“:”}/tgk/{print $7}’ /etc/passwd
◦  notice that this uses two pattern{action}pairs

CST8177 – Todd Kelley 35

}  for all lines of output from wc, print the first field
 wc /etc/passwd | awk '{print $1}’

}  for all lines in the /etc/passwd file, print the
number of fields

 awk -F: '{print NF}' /etc/passwd

}  for all lines in the /etc/passwd file, print the last

field – note difference between NF above and $NF
here

 awk -F: '{print $NF}' /etc/passwd

CST8177 – Todd Kelley 36

}  recall the effect of these control characters:
◦  ^Z suspend the current foreground process
◦  ^C terminate the current foreground process
◦  ^D end of file character
◦  ^U kill character to erase the command line

}  these are actually properties of the terminal
}  they can be set with the stty command
}  stty –a : print out the current tty settings
}  stty susp ^X :(that’s a caret ^, shift-6 on my

keyboard, followed by capital X) means set the susp
character to CTRL-X instead of CTRL-Z

CST8177 – Todd Kelley 37

}  if you accidentally dump the contents of a
binary file to your screen, and all the control
characters reconfigure your terminal on you,
you can reset it to sane values with

 stty sane

CST8177 – Todd Kelley 38

}  Sobel, Chapter 6
}  160_pathnames.html Unix/Linux Pathnames (absolute, relative, dot, dot dot)
}  450_file_system.html Unix/Linux File System - (correct explanation)
}  460_links_and_inodes.html Hard links and Unix file system nodes (inodes)
}  460_symbolic_links.html Symbolic Links - Soft Links - Symlinks
}  500_permissions.html Unix Modes and Permissions
}  510_umask.html Umask and Permissions

CST8177 – Todd Kelley 39

}  Linux recognizes and identifies several file types,
which is coded into the first letter of the first field of
information about the file:

}  - (dash)a regular file
}  b block device special file

}  c character device special file

}  d a directory

}  l a symbolic (soft) link

}  p a named pipe or FIFO

}  s socket special filename

l  In Linux, 3 types of access permissions or privileges
can be associated with a file:
–  read (r) grants rights to read a file
–  write (w) grants rights to write to, or change, a file
–  execute (x) grants rights to execute the file (to run

the file as a command)
l  All 3 permissions can then be applied to each of 3

types of users:
–  User: owner of the file
–  Group: group to which user must belong to gain

associated rights
–  Others: not User and not member of Group

(sometimes called “World” or “Everybody”)

r w x Meaning
0 0 0 0 No permission
0 0 1 1 Execute-only permission
0 1 0 2 Write-only permission
0 1 1 3 Write and execute permissions
1 0 0 4 Read-only permission
1 0 1 5 Read and execute permissions
1 1 0 6 Read and write permissions
1 1 1 7 Read, write and execute permissions

Octal	

Value

Octal representation of permissions

}  The same three types of access permissions or
privileges are associated with a directory, but with
some differences:
–  read (r) rights to read the directory
–  write (w) rights to create or remove in the directory
–  execute/search (x) rights to access the directory
meaning, cd into the directory, or access inodes it contains, or
“pass through”

All three permissions can then be applied to each of
three types of users as before.
–  User owner/creator of the file
–  Group group to which user must belong
–  Others everyone else (Rest-of-world)

}  Three special access bits. These can be combined as
needed.

}  SUID - Set User ID bit
n  When this bit is set on a file, the effective User ID of a process

resulting from executing the file is that of the owner of the file,
rather than the user that executed the file

n  For example, check the long listing of /usr/bin/passwd – the
SUID bit makes this program run as root even when invoked by
a regular user – allowing regular users to change their own
password

chmod 4xxx file-list
chmod u+s file-list

}  SGID - Set Group ID bit
n  Similar to SUID, except an executable file with this bit set will

run with effective Group ID of the owner of the file instead of the
user who executed the file.

chmod 2xxx file-list
chmod g+s file-list

}  sticky bit (restricted deletion flag)
n  The sticky bit on a directory prevents unprivileged users from

removing or renaming a file in the directory unless they are the
owner of the file or the directory

n  for example, /tmp is a world-writeable directory where all users
need to create files, but only the owner of a file should be able to
delete it.

n  without the sticky bit, hostile users could remove all files in /tmp;
whereas with the sticky bit, they can remove only their own files.

chmod 1xxx dir-list
chmod +t dir-list

}  The permissions a user will have is determined in this way:
n  If the user is the owner of the file or directory, then the

user rights are used.
n  If the user is not the owner but is a member of the group

owning the file or directory, then the group rights are
used.

n  If the user is neither the owner nor a part of the group
owning the file, then the other rights are used.

}  NOTE: It is possible to give the “world” more permissions
that the owner of the file. For example, the unusual
permissions -r--rw-rw- would prevent only the owner
from changing the file – all others could change it!

l  The permissions assigned to newly created files or
directories are determined by the umask value of your
shell.

l  Commands:
n umask - display current umask
n umask xyz - sets new umask to an octal value xyz

n  permissions on a newly created file or directory are
calculated as follows:

n  start with a “default” of 777 for a directory or 666 for a file
n  for any 1 in the binary representation of the umask, change the

corresponding bit to 0 in the binary representation of the default
n  umask is a reverse mask: the binary representation tells

you what bits in the 777 or 666 default will be 0 in the
permissions of the newly created file or directory

}  if umask is 022
◦  binary umask representation: 000010010 = 022
◦  default file permissions 666: 110110110
◦  permissions on new file: 110100100 = 644

}  if umask is 002
◦  binary umask representation: 000000010 = 002
◦  default file permissions 666: 110110110
◦  permissions on new file: 110110100 = 664

}  if umask is 003
◦  binary umask representation: 000000011 = 003
◦  default file permissions 666: 110110110
◦  permissions on new file: 110110100 = 664

CST8177 – Todd Kelley 49

}  notice that for files, a umask of 003 ends up
doing the same thing as a umask of 002

}  Why?

CST8177 – Todd Kelley 50

}  if umask is 022
◦  binary umask representation: 000010010 = 022
◦  default dir permissions 777: 111111111
◦  permissions on new dir : 111101101 = 755

}  if umask is 002
◦  binary umask representation: 000000010 = 002
◦  default dir permissions 777: 111111111
◦  permissions on new dir : 111111101 = 775

}  if umask is 003
◦  binary umask representation: 000000011 = 003
◦  default dir permissions 777: 111111111
◦  permissions on new dir : 111111100 = 774

CST8177 – Todd Kelley 51

}  notice that for directories, a umask of 003
gives different results than a umask of 002

}  Why?

CST8177 – Todd Kelley 52

l  It is important for the Linux file system manager to govern
permissions and other file attributes for each file and
directory, including
–  ownership of files and directories
–  access rights on files and directories
–  The 3 timestamps seen in stat (man stat)

l  The information is maintained within the file system
information (inodes) on the hard disk

l  This information affects every file system action.

}  chown owner[:group] files
n  Change ownership of files and directories (available for

root only)
Examples:
chown guest:guest file1 dir2
l  change ownership of file1 and dir2 to user guest and

group guest
chown guest dir2
l  change ownership of dir2 to user guest but leave the

group the same
chown :guest file1
l  change ownership of file1 to group guest but leave the

user the same (can also use chgrp)

}  chmod permissions files
n  Explicitly change file access permissions

Examples:
chmod +x file1
l  changes file1 to have executable rights for user/group/

other, subject to umask
chmod u+r,g-w,o-rw file2
l  changes file2 to add read rights for user, remove write

rights for group and remove both read and write rights for
others

chmod 550 dir2
l  changes dir2 to have only read and execute rights for

user and group but no rights for other

}  Three kinds of matching
1.  Filename globbing
�  used on shell command line, and shell matches these
 patterns to filenames that exist
�  used with the find command

2.  Regular expressions, used with
�  vi
�  sed
�  awk
�  grep

3.  Extended regular expressions
�  egrep or grep –E (not emphasized in this course)
�  perl regular expressions (not in this course)

CST8177 – Todd Kelley 56

}  filename globbing patterns match existing
pathnames in the current filesystem only

}  Globbing is used for
◦  globbing patterns in command lines
◦  patterns used with the find command
◦  examples:
�  ls *.txt
�  ls ?????.txt
�  ls [ab]*.txt
�  find ~ -name “*.txt”

CST8177 – Todd Kelley 57

}  IMPORTANT: regular expressions use some of
the same special characters as filename
matching on the previous slide but they mean
different things!

}  Read under REGULAR EXPRESSIONS in the
man page for the grep command - this tells
you what you need to know

}  The grep man page is normally available on
Unix systems, so you can use it to refresh
your memory, even years from now

CST8177 – Todd Kelley 58

}  [:alnum:] a – z, A - Z, and 0 - 9
}  [:alpha:] a - z and A - Z
}  [:cntrl:] control characters
}  [:digit:] 0 - 9
}  [:lower:] a - z
}  [:print:] visible characters, plus [:space:]
}  [:punct:] Punctuation characters and other symbols
◦  !"#$%&'()*+,\-./:;<=>?@[\\\]^_`{|}~

}  [:space:] White space (space, tab)
}  [:upper:] A - Z
}  [:xdigit:] Hex digits: 0 - 9, a - f, and A - F
}  [:graph:] (0x21 - 0x7E) (we won't use)

CST8177 – Todd Kelley 59

}  testing regular expressons with grep on stdin
◦  run grep ‘expr’ on the standard input
◦  use the single quotes to protect your expr from the

shell
◦  grep will wait for you to repeatedly enter your test

strings (type ^D to finish)
◦  grep will print any string that matches your expr, so

each matched string will appear twice (once when
you type it, and once when grep prints it)
◦  unmatched strings will appear only once where you

typed them
◦  type ^D to finish

CST8177 – Todd Kelley 60

}  examples (try these)
◦  grep ‘ab’ #any string with a followed by b
◦  grep ‘aa*b’ #one or more a followed by b
◦  grep ‘a..*b’ #a, then one or more anything, then b
◦  grep ‘a.*b’ #a then zero or more anything, then b
◦  grep ‘a.b’ # a then exactly one anything, then b
◦  grep ‘^a’ # a must be the first character
◦  grep ‘^a.*b$’ # a must be first, b must be last

}  Try other examples: have fun!

CST8177 – Todd Kelley 61

}  For the impatient, you can read ahead
http://elearning.algonquincollege.com/coursemat/alleni/idallen/
cst8177/13w/notes/000_script_style.html
}  From now on, at the top of all our shell scripts, we put

#!/bin/sh -u

UTF-8 (international) script header

PATH=/bin:/usr/bin ; export PATH

umask 022

unset LC_ALL # unset the over-ride variable

LC_COLLATE=en_US.utf8 ; export LC_COLLATE # sort by character set

LC_CTYPE=en_US.utf8 ; export LC_CTYPE # handle multi-byte chars

LANG=en_US.utf8 ; export LANG # legacy version of LC_CTYPE

CST8177 – Todd Kelley 62

}  http://teaching.idallen.com/cst8177/13w/notes/000_character_sets.html

}  Not all computer users use the same alphabet
}  When we write a shell script, we need to ensure that it handles text

properly in the presence of i18n
}  In the beginning, there was ascii, a 7 bit code of 128 characters
}  Now there’s Unicode, a table that is meant to assign an integer to

every character in the world
}  UTF-8 is an implementation of that table, encoding the 7-bit ascii

characters in a single byte with high order bit of 0
}  The 128 single-byte UTF-8 characters are the same as true ascii

bytes (both have a high order bit of 0)
}  UTF-8 characters that are not ascii occupy more than one byte
}  Locale settings determine how characters are interpreted and

treated, whether as ascii or UTF-8, their ordering, and so on

CST8177 – Todd Kelley 63

}  $# holds the number of arguments on the
command line, not counting the command
itself

}  $0 is the name of the script itself
}  $1 through $9 are the first nine arguments

passed to the script on the command line
}  After $9, there's ${10}, ${11}, and so on
}  $* and $@ denote all of the arguments
}  "$*" is one word with spaces in it
}  "$@" produces a list where each argument is

a separate word

CST8177 – Todd Kelley 64

#!/bin/sh –u

PATH=/bin:/usr/bin ; export PATH

umask 022

unset LC_ALL # unset the over-ride variable

LC_COLLATE=en_US.utf8 ; export LC_COLLATE # sort by character set

LC_CTYPE=en_US.utf8 ; export LC_CTYPE # handle multi-byte chars

LANG=en_US.utf8

echo "The number of arguments is: $#"
echo "The command name is $0"

echo "The arguments are $*"
echo "The first argument is: $1"

echo "The second argument is: $2"

echo "The third argument is: $3"

CST8177 – Todd Kelley 65

}  to get input from the user, we can use the read
builtin

}  read returns an exit status of 0 if it successfully
reads input, or non-zero if it reaches EOF

}  read with one variable argument reads a line from
stdin into the variable

}  Example:
#!/bin/sh
read aline #script will stop, wait for user
echo "you entered: $aline"

CST8177 – Todd Kelley 66

}  Use the –p option to read to supply the user
with a prompt

}  Example
#!/bin/sh –u
read –p "enter your string:" aline
echo "You entered: $aline"

CST8177 – Todd Kelley 67

}  read var1 puts the line the user types into the
variable var1

}  read var1 var2 var3 puts the first word of what
the user types in to var1, the second word into
var2, and the remaining words into var3

#!/bin/sh –u
read var1 var2 var3
echo "First word: $var1"
echo "Second word: $var2"
echo "Remaining words: $var3"

CST8177 – Todd Kelley 68

}  Each command finishes with an exit status
}  The exit status is left in the variable ? ($?)
}  A non-zero exit status normally means

something went wrong (grep is an exception)
}  non-zero means "false"
}  A exit status of 0 normally means everything

was OK
}  0 means "true"
}  grep returns 0 if a match occurred, 1 if not,

and 2 if there was an error

CST8177 – Todd Kelley 69

if list1; then
 list2;
fi

}  list1 is executed, and if its exit status is 0,

then list2 is executed
}  a list is a sequence of one or more pipelines,

but for now, lets say it's a command

CST8177 – Todd Kelley 70

}  A common command to use in the test list of
an if statement is the test command

}  man test
}  Examples:
}  test –e /etc/passwd
}  test "this" = "this"
}  test 0 –eq 0
}  test 0 –ne 1
}  test 0 –le 1

CST8177 – Todd Kelley 71

if test "$1" = "hello"; then
 echo "First arg is hello"
fi

if test "$2" = "hello"; then
 echo "Second arg is hello"
else
 echo "Second arg is not hello"
fi

CST8177 – Todd Kelley 72

Todd-Kelleys-MacBook-Pro:CST8177-13W tgk$ ls -li /bin/test /bin/[
1733533 -r-xr-xr-x 2 root wheel 43120 27 Jul 2011 /bin/[
1733533 -r-xr-xr-x 2 root wheel 43120 27 Jul 2011 /bin/test
Todd-Kelleys-MacBook-Pro:CST8177-13W tgk$

}  notice that [is another name for the test program:

if [-e /etc/passwd]; then
 echo "/etc/passwd exists"

fi

is the same as
if test –e /etc/passwd; then

 echo "/etc/passwd exists"
fi

CST8177 – Todd Kelley 73

$ [0 –eq 0]
$ echo $?
0
$ ["this" = "that"]
$ echo $?
1
$ ["this" = "this"]
echo $?
0
$ ["this" = "this"] # forgot the space after [
-bash: [this: command not found
$ ["this" = "this"] # forgot the space before]
-bash: [: missing ']'

CST8177 – Todd Kelley 74

for name [in word...] ; do list ; done

}  name is a variable name we make up
}  name is set to each word... in turn, and list is

exectuted
}  if [in word...] is omitted, the positional

parameters are used instead

CST8177 – Todd Kelley 75

for f in hello how are you today; do
 echo "Operating on $f"
done

CST8177 – Todd Kelley 76

while command; do
 # this code runs over and over
 # until command has
 # non-zero exit status
done

CST8177 – Todd Kelley 77

while read -p "enter a word: “ word; do
 echo "You entered: $word"
done

CST8177 – Todd Kelley 78

}  "opposite" of while
until ["$word" = END]; do
 read –p "Enter a word:“ word
 echo "You entered $word"
done

CST8177 – Todd Kelley 79

}  we'll use sed to read lines from stdin or a file, and write the
modified lines to stdout

}  we'll concentrate on the forms
◦  sed 's/this/that/'
�  replace first instance of this with that
◦  sed '/^#/s/this/that/'
�  on lines that begin with # replace first instance of this

with that
◦  sed 's/this/that/g'
�  replace all instances of this with that
◦  sed –e 's/this/that/' –e 's/what/who/'
�  replace first instance of this with that and first

instance of what with who

CST8177 – Todd Kelley 80

}  echo this | sed 's/this/that/'

that

}  echo this and this | sed 's/this/that/'

that and this

}  echo this and this | sed 's/this/that/g'

that and that

}  echo this and what | sed -e 's/this/that/' -e 's/what/why/'

that and why

}  echo this and that | sed -e 's/this/that/' -e 's/that/why/g'

why and why

CST8177 – Todd Kelley 81

}  building complex tests from simple tests
}  test1 –a test2
◦  both test1 and test2 must be true

}  test1 –o test2
◦  at least one must be true

}  ! test1
◦  test1 must be false

}  (test1)
◦  true if test1 is true

CST8177 – Todd Kelley 82

}  Suppose you might qualify for a scholarship:
}  Those who qualify are:
◦  eight feet tall, and ??
◦  born on the moon, and ??
◦  algonquin student and ??

}  or in other words
◦  eight feet tall && ??
◦  born on the moon && ??
◦  algonquin student && ??

}  In which case do we need to find out what ??
is?

CST8177 – Todd Kelley 83

}  As soon as we encounter "true", we can stop
}  You qualify for a $1000 rebate under the

following conditions:
◦  born on the moon, or ??
◦  algonquin student, or ??

}  In the first case, we need to know what the
exit status of the ?? is, we need to run the ??
command

}  In the second case, we can stop before
running the ?? command

CST8177 – Todd Kelley 84

}  && and || are used with commands that tend
to get things done
◦  to graduate, you
�  complete first year && complete second year
◦  complete first year is a "command" that gets things

done: you learn the first-year material
}  -a and –o are used in test, and don't do

things, just affect the exit status of test
◦  you are a rich canadian if
�  you are canadian –a you are rich
◦  checking whether or not you're canadian doesn't

get things done – but it does establish a truth value

CST8177 – Todd Kelley 85

}  set with arguments but no options sets the
positional parameters to the arguments

}  $# is the number of arguments
}  $1 is the first arg
}  $2 is the second arg
}  $3 is the third arg
◦  etc

}  $@ and $* are all args

CST8177 – Todd Kelley 86

}  shift
}  moves all the arguments to the left
}  shift n moves all the arguments to the left by

n
}  shift
◦  $# is decreased by 1
◦  the pre-shift $1 is lost
◦  $1 becomes what was in $2
◦  $2 becomes what was in $3
◦  $3 becomes what was in $4
�  etc

CST8177 – Todd Kelley 87

}  -v option for bash/sh
◦  sh –v myscript
◦  shell will print each line as its read
◦  loop statements are printed once

}  -x option for bash/sh
◦  sh –x myscript
◦  shell will display $PS4 prompt and the expanded

command before executing it
◦  each loop iteration is shown individually

CST8177 – Todd Kelley 88

}  exit causes the shell to exit with the exit
status of the last command that was run

}  exit N causes the shell to exit with exit
status N

CST8177 – Todd Kelley 89

case test-string in
 pattern-1)
 command1
 command2
 ;;
 pattern-2)
 command3
 command4
 ;;
 *)
 command5
 ;;
esac

CST8177 – Todd Kelley 90

}  the patterns are globbing patterns matched
to the test-string

}  So we tend to use the * pattern as a catchall,
if all other matches fail, but that's not
required

}  case statement exit status is the exit status of
the last command in the matching block, or 0
if no blocks match

CST8177 – Todd Kelley 91

}  We can use the vertical bar to specify
alternative patterns:

case "$character" in
 a|A)
 echo "The character is A"
 ;;
 [bB])
 echo "the character is B"
 ;;
 *)
 echo "The character is not A or B"
 ;;
esac

CST8177 – Todd Kelley 92

}  A script can test whether or not standard
input is a terminal

[-t 0]

}  What about standard output, and standard

error?

CST8177 – Todd Kelley 93

}  Occasionally you'll see a command called :
}  : arguments
}  That command expands its arguments and

does nothing with them, resulting in a 0 exit
status

CST8177 – Todd Kelley 94

}  examples of using expr command:
a=`expr 3 + 4`
a=`expr 3 – 4`
a=`expr 3 * 4`
a=`expr 13 / 5` # integer division: 2
a=`expr 13 % 5` # remainder: 3
}  increment the integer in variable a
a=`expr $a + 1`

CST8177 – Todd Kelley 95

}  We have already been using the ps command
to print out information about processes
running on the system

}  ps –ef or ps aux piped to grep is common
}  there are many options for printing specific

info in a specific way: man ps or ps -h
}  ps –l # long format
}  ps –f versus ps –fw

CST8177 – Todd Kelley 96

}  top displays some system information, and a
list of processes, ordered on a column

}  the most important keys are ?, h, and q
(according to man page)

}  load average: 5min, 10min, 15min
}  load average is number of processes running

or in uninterruptable state (disk IO, others)
}  no exact rule, but if load average is more

than 1-1.5 times the number of CPUs, the
machine is overloaded in some way and you
have a problem (your mileage may vary)

CST8177 – Todd Kelley 97

}  Each process has a priority, which you can
control with the nice command

}  -20 highest priority, 19 lowest priority
}  nice [–n increment] command
}  nice –n 10 long_command # 10 is default
}  only superuser can specify negative

increments
}  For processes already running:
◦  renice priority –p PID or renice –n increment –p PID

CST8177 – Todd Kelley 98

}  your shell can run several processes for you
at once

}  we can run commands in the background
◦  command &

}  we can put a running command in the
background
◦  ^Z

}  what jobs are there?
◦  jobs

}  resume a stopped job
◦  bg %N # background, where N is a job number
◦  fg %N # foreground

CST8177 – Todd Kelley 99

}  When we type ^C when a process is running
in the foreground, the process receives a
SIGINT signal, which by default would cause a
process to terminate.

}  SIGINT: ^C (default), similar to SIGTERM
}  SIGHUP: terminal has been closed
}  SIGTERM: clean up if necessary, then die
}  SIGKILL: die right now
}  We can send these signals to a process with

the kill command

CST8177 – Todd Kelley
10

0

}  kill –SIGNAL PID #send SIGNAL to process PID
}  When system shuts down, it
◦  sends all processes a SIGTERM
◦  waits a few seconds (5 or 10)
◦  sends all processes a SIGKILL

}  Why not just wait for the SIGTERM to finish?
}  Because SIGTERM can be handled, possibly

ignored, it's optional
}  SIGKILL cannot be handled – it works unless

the process is in an uninterruptible state
(maybe disk I/O, NFS)

CST8177 – Todd Kelley
10

1

}  full details from man 5 crontab
◦  recall that is how we read section 5 of the manual (section 5 of the

manual is file formats)
}  man crontab will give info about the crontab command (in

default section 1 of the manual)
}  create a file containing your cron instructions (see next slide),

naming that file, say, myuser.crontab
}  run the crontab command to submit that file's contents to be

your user's crontab file: crontab < myuser.crontab
}  alternatively, you can edit your user's live crontab file: crontab

-e

CST8177 – Todd Kelley
10

2

•  All fields must contain a value of some valid kind
•  Field are separated by one or more spaces
•  Asterisk (*) indicates the entire range
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .--------- day of month (1 - 31)
| | | .------ month (1 - 12)
| | | | .--- day of week (0 – 7, both 0 and 7 are Sunday)
| | | | |
 0 6 1 * * /home/user/bin/mycommand
 1 6 15 * * /home/user/bin/anothercommand > /dev/null 2>&1

crontab format (man 5 crontab)

}  ranges with dash are allowed: first-last
}  * means every value first-last
}  lists are allowed: first,second,third
}  steps indicated with '/' are allowed after

ranges or asterisk:
◦  */2 means every second one
◦  1-7/2 means 1,3,5,7

CST8177 – Todd Kelley
10

4

}  crontab –l
◦  list the contents of your current live crontab file

}  crontab –e
◦  edit the contents of your current live crontab file

}  crontab
◦  read the new contents of for your crontab file from

stdin
}  crontab –r
◦  remove your current crontab file

CST8177 – Todd Kelley
10

5

}  see man 5 crontab for example crontab
}  really, see the example: man 5 crontab
}  things to watch out for
◦  input for your commands (they run without anyone to type

input)
◦  output of commands (if you don't (re)direct output, the

output will be emailed – better if you handle it)
◦  error output of commands (same as for output above)
◦  summary: it's best if your commands in a crontab are

arranged with input and output already handled, not relying
on output to be emailed by cron
◦  if you want to email, do it explicitly in your command

somehow, and test that command before putting it into
your crontab

CST8177 – Todd Kelley
10

6

}  at command runs a set of commands at a later time
}  at command takes a TIME parameter and reads the set of

commands from standard input
}  example (run commands at 4pm 3 days from now)
◦  at 4pm + 3 days
 rm –f /home/usr/foo
 touch /home/usr/newfoo
 ^D

}  other at-related commands: atrm, atq
}  for details: man at
}  as with cron, you must be aware of how your

commands will get their input (if any) and what will
happen to their output (if any)

CST8177 – Todd Kelley
10

7

}  an account has been created for everyone
who should have one (the users)

}  every user is authorized to read, write, and
execute exactly what they should be able to
◦  not more
◦  not less

}  every user can access the resources they need
◦  disk space
◦  software applications/libraries
◦  processes, memory, CPU time
◦  resource hogs don't affect the work of other users

CST8177 – Todd Kelley
10

8

}  Accessible to its users
◦  accessible remotely if applicable (ssh)
◦  good uptime with reasonable maintenance windows

}  Secure from attack
◦  inaccessible to unauthorized users (external attack)
◦  no unauthorized or stolen access to user accounts
◦  resistant to internal attacks
�  users cannot elevate their privileges
�  users don't bring system down without trying
◦  prevent cross-user attacks
�  ensure users cannot interfere with each other's

�  confidentiality of files
�  integrity of files
�  availability of files

CST8177 – Todd Kelley
10

9

}  backups
}  security patches
}  monitor and manage disk space
◦  find and educate and control "space hogs"
◦  add new disk space
◦  replace failed disk space

}  software installation
}  software updates
}  system upgrades (preferably not often)
}  monitor the system logs for issues

CST8177 – Todd Kelley
11

0

}  Root account
◦  having a root password is not necessary
◦  not having a root password means one less

password to manage, one less vulnerability
◦  root access is gained by system administrators

}  System Administrator
◦  configured in sudoers file
◦  gain root privileges with sudo -s

}  Regular User
◦  often named according to a pattern
◦  this is the kind of account you have on the CLS

CST8177 – Todd Kelley
11

1

}  common model is to put sysadmins in
sudoers file

}  as root, do visudo
}  put the following line in
◦  youradminname ALL=(ALL) ALL
◦  youradminname: the username you use for admin
◦  ALL: from any host
◦  (ALL): run commands as any user
◦  ALL: run any command

}  test that you can become root with sudo –s
}  put * in root password field in /etc/shadow

CST8177 – Todd Kelley
11

2

}  Create, Modify, and Remove User Accounts
}  Create, Populate, Modify, and Remove Groups
}  Password Policy
◦  strength of passwords
◦  how often passwords must be/can be changed
◦  how often passwords can be reused (or based on an

old password)
}  Set and Administer File Permissions
}  http://teaching.idallen.com/cst8207/12f/

notes/600_users_and_groups.html

CST8177 – Todd Kelley
11

3

}  to create one user:
useradd –c "Full Name" user001
chmod 750 /home/user001
passwd user001 # and enter passwd by hand

CST8177 – Todd Kelley
11

4

}  there are various possible strategies for
creating many new user accounts

}  one possibility:
◦  use Linux utilities and/or your own script to create a set of

commands for each new user (one-off script):
useradd -c "User 1" user001 #create the user
usermod –p u75jjvrue5B92 user001 #assign passwd
chmod 750 /home/user001 || exit 1 #homedir perms

}  If you were creating 100 users, you'd have
300 commands in your one-off script

CST8177 – Todd Kelley
11

5

}  another possibility: the "newusers" command
}  man newusers
}  newusers takes a file containing info about

the accounts you want to create
}  the input file for creating the accounts is in

the same format as the /etc/passwd file:
uncle:3uncle4:503:503:Uncle Tom:/home/uncle:/bin/bash
aunt:3aunt4:504:504:Aunt Betty:/home/aunt:/bin/bash

CST8177 – Todd Kelley
11

6

}  http://teaching.idallen.com/cst8207/13w/
notes/810_package_management.html

}  yum can install software packages for you,
retrieving them from a repository over the
network

}  performs dependency analysis: if the package
you want to install depends on another
package, it will install that too

}  can also query installed packages, remove
packages, update packages, etc

}  run with root privileges

CST8177 – Todd Kelley
11

7

}  Examples: (see "man yum" for details)
◦  yum install ntp
�  install the package "ntp" and its dependencies
◦  yum update
�  update all currently installed packages
◦  yum update "nt*" # quote the glob from the shell
�  update all packages that match the glob
◦  yum –v repolist
◦  yum list installed
◦  yum list available
◦  yum list # combination of two above
◦  yum search fortune

CST8177 – Todd Kelley
11

8

}  we shouldn't need to change these, but if
you're curious...

}  repository files are in /etc/yum.repos.d
◦  CentOS-Base.repo
�  main CentOS repository mirrors
◦  CentOS-Media.repo
�  uses the DVD in your drive as a repository

CST8177 – Todd Kelley
11

9

}  create an archive of a directory
◦  tar cvzf mydirectory.tgz mydirectory
�  c: create an archive
�  v: verbose, print the filenames as their added
�  z: compress the archive
�  f: use the following as the filename for the archive

}  extract an archive
◦  tar xvzf mydirectory.tgz
�  x: extract an archive
�  z: uncompress the archive

CST8177 – Todd Kelley
12

0

}  print listing of an archive without extracting
◦  tar tvzf mydirectory.tgz mydirectory
�  t: print a listing
�  v: verbose, like a long listing
�  z: the archive is compressed
�  f: use the following as the filename for the archive

}  In each of the above examples
◦  exactly one of t, c, or x is mandatory
◦  f with an archive name is mandatory
◦  z: is mandatory if archive is, or is to be,

compressed
◦  v: is optional for verbosity

CST8177 – Todd Kelley
12

1

}  be careful with a trailing slash on the source
}  a trailing slash on source has special

meaning: copy the contents of the directory
}  these are the same
◦  rsync –avH /src/foo /dst/
◦  rsync –avH /src/foo/ /dst/foo

}  copy contents of src directory to dst directory
◦  rsync -avH /src/ /dst # /src/* in /dst/

}  copy src directory to dst directory
◦  rsync -avH /src /dst #end up with /dst/src

CST8177 – Todd Kelley
12

2

}  rsync can copy across the network

rsync –avH dir/. kelleyt@remote.example.com:dir

}  that will copy/synchronize the local "dir" with the

remote "dir" in kelleyt's home dir on the remote
machine named “remote.example.com”

}  notice the colon in the remote argument
}  if you forget the colon, you do a local copy to
a file with '@' in its name

CST8177 – Todd Kelley
12

3

CST8177 - Algonquin College
12

4

Naming partitions
Ø  sdx1 – sdx4

• Primary Partitions
recorded in the
partition table

Ø  sdx5 – sdx63
• Logical partitions

Note: You can have up to 4 primary partitions created in your
 system, while there can be only one extended partition.

Sda1 Sda2 Sda3

Sda5 Sda6 Sda7

CST8177 - Algonquin College
12

5

Naming partitions
Ø  sdx1 – sdx4

• Primary Partitions
recorded in the
partition table

Ø  sdx5 – sdx63
• Logical partitions

Note: You can have up to 4 primary partitions created in your
 system, while there can be only one extended partition.

Sda1 Sda2 Sda3

Sda5 Sda6 Sda7

}  http://teaching.idallen.com/cst8207/13w/
notes/720_partitions_and_file_systems.html

CST8177 – Todd Kelley
12

6

}  no drive letters!

CST8177 – Todd Kelley
12

7

 /
var/ tmp/ home/
 file1 afile dir1/
 file2 bfile file1
 file 2

/dev/sda2

 /
tgk/ idallen/ donellr/
 file1 afile file2
 file file

/dev/sda3

}  mount /dev/sda3 /home

CST8177 – Todd Kelley
12

8

 /
var/ tmp/ home/
 file1 afile dir1/
 file2 bfile file1
 file 2

/dev/sda2

 home/
tgk/ idallen/ donellr/
 file1 afile file2
 file file

/dev/sda3

}  the /home directory name still on /dev/sda2
}  the contents of /home are on /dev/sda3
}  the previous contents of /home are hidden

}  touch /home/donellr/file3

CST8177 – Todd Kelley
12

9

 /
var/ tmp/ home/
 file1 afile dir1/
 file2 bfile file1
 file 2

/dev/sda2

 home/
tgk/ idallen/ donellr/
 file1 afile file2
 file file file3

/dev/sda3

}  umount /dev/sda3

CST8177 – Todd Kelley
13

0

 /
var/ tmp/ home/
 file1 afile dir1/
 file2 bfile file1
 file 2

/dev/sda2

 /
tgk/ idallen/ donellr/
 file1 afile file2
 file file file3

/dev/sda3

}  man 5 fstab
}  note that records for swap space appear in /

etc/fstab, although swap space is not a
filesystem (files are not stored in swap space)

}  first field: device name
}  second field: mount point
}  third field: type
}  fourth field: mount options
}  fifth field: backup related (dump program)
}  sixth field: file system check order

CST8177 – Todd Kelley
13

1

}  mount options
◦  on CentOS 5.8, "defaults" means
�  rw: read and write
�  dev: interpret device nodes
�  suid: setuid and setgid bits take effect
�  exec: permit execution of binaries
�  auto: mount automatically due to "mount -a"
�  nouser: regular users cannot mount
�  async: file I/O done asynchronously

}  other options:
}  these are for quota utilities to see rather than mount

}  usrquota
}  grpquota

CST8177 – Todd Kelley
13

2

}  http://teaching.idallen.com/cst8207/13w/
notes/580_system_log_files.html

}  kernel messages are kept in a ring buffer
}  common way to access the boot messages,

including device discovery
}  dmesg
}  example: look for disk discovery:
◦  dmesg | grep sd

}  (another way): look at disks/partitions that
the kernel knows about:
◦  cat /proc/partitions

CST8177 – Todd Kelley
13

3

}  # migrating the /usr directory to be a separate partition on new disk
}  shut down machine
}  connect new disk to machine
}  power on machine
}  partition new disk (fdisk command)
}  make filesystem in new partition (mkfs command)
}  single user mode (shutdown command)
}  ensure target directory is backed up
}  move the target directory out of way (/usr to /usr1) (mv command)
}  create the mount point (to replace dir we just moved, same name)
}  mount new filesystem (mount command)
}  /usr1/bin/rsync –aHv /usr1/. /usr (notice where rsync is!)
}  add a record for the new filesystem /etc/fstab
}  exit, to return to runlevel 3
}  remove /usr1 (content should be backed up)

CST8177 – Todd Kelley
13

4

}  Note the difference between a mountpoint and a directory
◦  mountpoint: both of these commands will apply to the entire filesystem mounted

there
◦  directory: both of these commands will apply to just that directory, not recursively

every subdirectory underneath it

}  summary of lsof:
◦  http://www.thegeekstuff.com/2012/08/lsof-command-examples/

}  fuser: similar in purpose to lsof
}  examples:
◦  fuser /mountpoint # all processes using the filesystem mounted at /

mountpoint
◦  fuser /home/dir # all processes using the directory dir

}  summary of fuser:
◦  http://www.thegeekstuff.com/2012/02/linux-fuser-command/

 CST8177 – Todd Kelley
13

5

}  A bind mount is used to mount a directory onto a
mount point: man mount

}  use the “bind” option for the mount command
mount –o bind /some/dir /anotherdir
◦  now /some/dir and /anotherdir are the same directory

}  Be careful with bind mounts, because they make it
possible to form cycles in the file system

}  e.g. dangerous: "mount –o bind /home /home/user/dir"
◦  serious repercussions for
�  rm –rf /home/user # will remove all of /home
�  find /home/user # will never stop
�  any program that recursively descends directories

CST8177 – Todd Kelley
13

6

}  https://access.redhat.com/knowledge/docs/en-US/
Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-
disk-quotas.html

}  Example: enabling quotas on /home
}  /etc/fstab: usrquota,grpquota mount options for file system

containing /home
}  quotacheck –cug /home
◦  c: don't read quota files, create new quota files
◦  u: do user quotas
◦  g: do group quotas

}  edquota username or setquota -u user soft hard isoft ihard fs
}  edquota –t # edit grace period
}  quotaon –vaug # turn quotas on
}  repquota –a # report on quotas
}  quotaoff –vaug; quotacheck –vaug; quotaon –vaug #single user mode

CST8177 – Todd Kelley
13

7

}  There are dangers associated with doing file
system operations on "system directories"
that might be used in system operation.

}  For example, many programs will use the
shared libraries in /usr/lib, which disappear if
we move /usr

}  Also, there may come a time when the system
won't boot properly: MBR corrupted, bad
entry in /etc/fstab, inconsistent / file system

CST8177 – Todd Kelley
13

8

}  That LVM tutorial link again:
◦  http://www.howtoforge.com/linux_lvm

}  Because Red Hat's installer used Disk Druid to
set up LVM and installed the root file system
on a Logical Volume, we can
◦  add a hard disk
◦  create a partition on that hard disk
◦  # or, maybe we already had an unused partition,

such as a reclaimed Windows partition
◦  set up that partition as a physical volume
◦  add that physical volume to our Volume Group
◦  grow the Logical Volume on the Volume Group
◦  grow the file system on that Logical Volume

CST8177 – Todd Kelley
13

9

}  Power button pressed
}  BIOS
}  POST
}  MBR : contains grub stage 1
}  grub stage 1 : to find grub stage 2
}  grub stage 2 : to launch kernel
}  kernel running
}  init process (PID 1) : consults inittab
}  /etc/inittab
}  /etc/init.d/rc.sysinit
}  /etc/rc.d/rc 3 : assuming default runlevel 3

CST8177 – Todd Kelley
14

0

}  /etc/init.d/*
◦  these are scripts for starting, stopping, restarting

services
}  /etc/rc.d/rc.N.d/* #where N is a runlevel
◦  these are symbolic links to service's script
◦  begins with K means service should not be running

in that runlevel: call it with "stop" argument
◦  begins with S means service should be running in

that runlevel: call it with "start" argument
}  chkconfig maintains these scripts

CST8177 – Todd Kelley
14

1

}  /etc/inittab contains records of the form
◦  id:runlevels:action:process
◦  id: identifies an entry
◦  runlevels: the runlevels in which the action should

be taken
◦  action: the action that should be taken
◦  process: the process to be executed

CST8177 – Todd Kelley
14

2

