
ssh keys, yum, ntp, rsync

1

 CST8177 Linux Operating Systems II

 Saturday 13-Dec-14 10:30-13:30 T130

2

 ifconfig to find your VM's ip address so you can ssh to it

 ssh key login

 yum

 ntp

 tar

 scp

 rsync

3

 run the /sbin/ifconfig command

 on your new install, you'll have only your root
account at first:

ifconfig

eth0 Link encap:Ethernet HWaddr 00:0C:29:14:F8:93

 inet addr:192.168.180.207 Bcast:192.168.180.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe14:f893/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1112 errors:1099 dropped:0 overruns:0 frame:0

 TX packets:4178 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:210424 (205.4 KiB) TX bytes:624100 (609.4 KiB)

 Interrupt:19 Base address:0x2024

4

 key-based logins are more secure than
password logins

 you run ssh to log in from a client to a server

 on the client, you have a private and public
key pair (with passphrase)

 on the server, you put your public key into

~/.ssh/authorized_keys

 IMPORTANT: permissions 700 on .ssh/, 600
on authorized_keys

 when you log in from the client to the server,
you're prompted for your key's passphrase

5

 Anybody can generate a matching
private/public key pair

 You let anybody and everybody have a copy
of the public key – it's public!

 You keep your private key secret and hidden,
only you have it – it's private!

 Anyone who has your public key can use your
public key to create a challenge that only
someone with the matching private key can
meet (in other words, only you can meet).

6

 Key pairs are designed mathematically so that
something encrypted with one key of the
private/public pair can be decrypted by only
the matching key of the pair.

 Something encrypted with the public key
CANNOT be retrieved with the public key –
the private key is required!

 So the "challenge" is to encrypt a message
(maybe random) with the public key.

 Only someone with the private key can
decrypt the message and retrieve the original
message

7

 A copy of your public key is stored in
authorized_keys in your account

 You have the private key and you tell the ssh server
that you want to log in

 The ssh server says "OK", I have your public key
here, and I'll use it to encrypt this random
message, and give the result to you. If you can tell
me the original message, you must have the private
key (and you must be you).

 You use your private key to retrieve the original
message, and send it back to the server.

 The server lets you in, because it assumes only you
have the private key necessary to retrieve the
original (random) message.

8

 Cinderella's slipper?
◦ the assumption is that only Cinderella's foot (which

only Cinderella has) will fit into the slipper

◦ The foot and the slipper match like a private and
public key match

◦ One difference is that in public key cryptography,
everybody has a copy of the slipper (only the real
Cinderella has the foot that will fit the slipper)

◦ If I want you to prove to me that you are Cinderella,
I get you to prove to me that your foot fits in the
Cinderella slipper – if it fits, you must be Cinderella

◦ The mathematics ensures that nobody else's foot
will fit somebody's slipper, and given a slipper, you
cannot create the matching foot.

9

 Generating a keypair on Linux client:
$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/wen99999/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/wen99999/.ssh/id_rsa.

Your public key has been saved in /home/wen99999/.ssh/id_rsa.pub.

The key fingerprint is:

81:27:65:81:26:fb:1b:6c:71:ae:a0:9c:58:5b:64:3b wen99999@wen99999

The key's randomart image is:

+--[RSA 2048]----+

| .+. |

| . o+ |

| +o o |

| + .o.. |

| o + +S |

| . E = . |

| + = + + |

|. = o |

| |

+-----------------+

[wen99999@wen99999 ~]$

10

 install your (client) public key to the server
◦ put the contents of id_rsa.pub (we generated this

file on the client) into ~/.ssh/authorized_keys
on the server

◦ can do this with vi, copy-paste

◦ alternatively, can do this with ssh-copy-id
command

◦ you're running this command on the client

client$ ssh-copy-id username@example.com

◦ now you should be able to log in with the key, and
you'll need to give your passphrase for your key

11

 http://www.howtoforge.com/ssh_key_based_logins_putty

12

 http://teaching.idallen.com/cst8207/14w/no
tes/520_package_management.html

 yum can install software packages for you,
retrieving them from a repository over the
network

 performs dependency analysis: if the package
you want to install depends on another
package, it will install that too

 can also query installed packages, remove
packages, update packages, etc

 run with root privileges

13

http://teaching.idallen.com/cst8207/14w/notes/520_package_management.html
http://teaching.idallen.com/cst8207/14w/notes/520_package_management.html
http://teaching.idallen.com/cst8207/14w/notes/520_package_management.html

 Examples: (see "man yum" for details)
◦ yum install ntp

 install the package "ntp" and its dependencies

◦ yum update

 update all currently installed packages

◦ yum update "nt*" # quote the glob from the shell

 update all packages that match the glob

◦ yum –v repolist # print info about repositories

◦ yum list installed # list the installed packages

◦ yum list available # list the available packages

◦ yum list # combination of two above

◦ yum search fortune # search package names for
fortune

14

 we shouldn't need to change these, but if
you're curious...

 repository files are in /etc/yum.repos.d
◦ CentOS-Base.repo

 main CentOS repository mirrors

◦ CentOS-Media.repo

 uses the DVD in your drive as a repository

 To configure your machine to use the EPEL
repository (for cowsay, fortune-mod, etc):
◦ rpm –Uvh

http://dl.fedoraproject.org/pub/epel/6/x86_64/ep
el-release-6-8.noarch.rpm

15

 we'll be using the ntp package to keep our
CentOS clocks synchronized with a time
server, such as 1.centos.pool.ntp.org

 ntpd, the ntp daemon, will look after keeping
our clocks accurate

 /etc/ntp.conf configures the daemon, and all
we need to do is arrange for the daemon to
start:
bash$ chkconfig ntpd on

bash$ chkconfig --list ntpd

16

 now that the ntpd daemon is configured to
start upon entering runlevels 2,3,4,and 5,
let's check whether it's running:

bash$ service ntpd status

ntpd is stopped

 we are in runlevel 3 but we haven't actually
entered that runlevel since we ran chkconfig

 we'll start it manually this one time:

bash$ service ntpd start

17

 create an archive of a directory
◦ tar cvzf mydirectory.tgz mydirectory

 c: create an archive

 v: verbose, print the filenames as their added

 z: compress the archive

 f: use the following as the filename for the archive

 extract an archive
◦ tar xvzf mydirectory.tgz

 x: extract an archive

 z: uncompress the archive

18

 print listing of an archive without extracting
◦ tar tvzf mydirectory.tgz mydirectory

 t: print a listing

 v: verbose, like a long listing

 z: the archive is compressed

 f: use the following as the filename for the archive

 In each of the above examples
◦ exactly one of t, c, or x is mandatory

◦ f with an archive name is mandatory

◦ z: is mandatory if archive is, or is to be,
compressed

◦ v: is optional for verbosity

19

 scp behaves much like the familiar cp
command, but with remote capabilities

 The arguments (source or destination) can
optionally be for a remote file/directory

 http://teaching.idallen.com/cst8207/14w/notes/015_file_transfer.html

 A remote argument has a colon in it

 To copy local passwd file to wen99999's
home directory on a remote computer
◦ scp /etc/passwd wen99999@cst8177.idallen.ca:

◦ Notice the colon in the remote dest argument

◦ file ~wen99999/passwd on cst8177.idallen.ca
is created or if it already existed, it's overwritten

20

http://teaching.idallen.com/cst8207/14w/notes/015_file_transfer.html
http://teaching.idallen.com/cst8207/14w/notes/015_file_transfer.html
mailto:wen99999@cst8177.idallen.ca

 Whatever name follows the colon is relative to
the home directory on the remote side
(unless it's an absolute path and therefore not
relative)

 use -p option to preserve timestamps, modes
(analogous to -p with cp command)

 Use CAPITAL P option to specify a port
◦ if you're at a McDonalds and you want to copy to

myuser's home directory on the CLS:

◦ scp -P 443 localfile.txt myuser@cst8177.idallen.ca:

◦ again, notice the colon in the remote argument

◦ notice that port option is -p for ssh, -P for scp

21

mailto:myuser@cst8177.idallen.ca

 absolute local to absolute remote file foo
◦ scp -p /etc/passwd user@remote.com:/home/user/foo

 relative local file to absolute remote directory
◦ scp -p myfile user@example.com:/home/user/

 directory and its contents to remote directory
◦ scp -rp mydir user@example.com:somedir

 absolute remote file to local home dir
◦ scp user@example.com:/etc/passwd ~

 relative remote file to current local dir
◦ scp user@example.com:somedir/foo .

22

mailto:user@example.com:/home/user/
mailto:user@example.com:somedir
mailto:user@example.com:/etc/passwd
mailto:user@example.com:/etc/passwd
mailto:user@example.com:/etc/passwd
mailto:user@example.com:/etc/passwd
mailto:user@remote.com:somedir/foo
mailto:user@remote.com:somedir/foo

 rsync behaves similarly to scp

 only one rsync argument can be remote

 Example copy local (relative) to local (absolute):

 rsync –aHv adir /some/dir
◦ a: archive mode, preserve permissions, timestamps,

etc

◦ H: preserve hard links

◦ v: verbose

◦ if "dir" exists, "/some/dir/adir" will result

◦ if "dir" does not exist, "/some/dir" will be created
and contain "adir", "/some/dir/adir" will result

23

 be careful with a trailing slash on the source

 a trailing slash on source has special
meaning: copy the contents of the directory

 these are the same
◦ rsync –avH /src/foo /dst/

◦ rsync –avH /src/foo/ /dst/foo

 copy contents of src directory to dst directory
◦ rsync -avH /src/ /dst # /src/* in /dst/

 copy src directory to dst directory
◦ rsync -avH /src /dst #end up with /dst/src

24

 If you can't remember directory creation, and
directory contents (trailing slash) versus directory
itself, then use dot as the source directory for
unambiguous usage

 All of the following will sync the local dir directory
to make the remote rdir directory the same as
dir, whether rdir already exists or not

 Use the same name (dir) on both sides if desired

rysnc –avH path/to/dir/. user@remote:path/to/rdir

rysnc –avH path/to/dir/. user@remote:path/to/rdir/.

rysnc –avH path/to/dir/./ user@remote:path/to/rdir

rysnc –avH path/to/dir/./ user@remote:path/to/rdir/.

25

 rsync can copy across the network

rsync –avH dir/. wen99999@remote.example.com:dir

 that will copy/synchronize the local "dir" with the
remote "dir" in wen99999's home directory on the
remote machine named “remote.example.com”

 notice the colon in the remote argument

 if you forget the colon, you do a local copy to

a file with '@' in its name

26

 after the colon, you can specify a relative path
(relative to the home directory) or an absolute
path

rsync –av adir/. wen99999@192.168.0.170:/etc/adir

 that example uses an absolute path at the
destination end, and an IP address instead of a
hostname

27

 the other direction works too

rsync wen99999@192.168.0.170:/etc/passwd .

 that copies the remote file /etc/passwd to the
current directory (.), resulting in ./passwd

 this time, we are not using archive mode

 this time, we are using an IP address instead of
a fully qualified domain name

28

 rsync compares source and destination and
minimizes the number of bytes that need to
be copied to update the destination

 rsync algorithm is designed to transfer only
the parts of a file that have changed

 notice the "speedup" in the summary when
you use the "-v" option

29

