CST8177 – Linux II Disks, Filesystems

Today's Topics

- sudo and PATH (environment)
- disks
- partitioning
- formatting file systems: mkfs command
- checking file system integrity: fsck command
- /etc/fstab
- mounting file systems: mount command
- unmounting file systems: umount command
- Isof and fuser

Executing a command (review)

- builtin command (part of the shell itself, so there's no notion of "where" the command is)
 - echo "Hello world"
 - exit 2 # inside a script, for example
- by absolute pathname (does not depend on PATH variable):
 - ∘ /bin/ls –l
 - /usr/sbin/useradd newuser
 - /usr/bin/sudo –i
 - "\$HOME"/bin/myscript.sh # shell expands \$HOME so this is really /home/username/bin/myscript.sh

Executing a command (cont'd)

- by relative pathname (does not depend on PATH variable, but DOES depend on your current directory – interactive shells only)
- You MUST NOT do any of these in a shell script
 - ./myscript.sh # script is in current directory
 - ../myprogram # script is in parent directory
 - ../../somedir/anotherscript.sh # two dirs up, then one directory down
 - bin/mycommand # assumes "bin" is a directory in the current directory

Executing a command (cont'd)

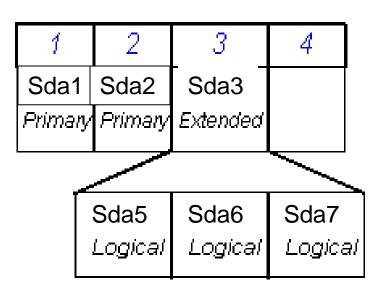
- using the PATH environment variable
 - |s -|
 - cp foo ../bar
 - o rm ../bar/foo
- none of these commands will run unless they reside in a directory that is listed in the PATH environment variable
- Now that we are using root privileges, we need to be aware that root can have a different PATH than your non-root user

sudo and your environment

- sudo command # just run the command
 - you get 5 min by default to invoke sudo again without password
 - example\$ sudo head /etc/shadow
- sudo -s # superuser shell with current env
- sudo -i # simulate root login (root's env)
- sudo -s leaves you in the same directory, and with the same PATH
- to take on root's environment including PATH:
 - sudo -i
 - or
 - sudo -s followed by su -

Disks and disk management

- partitioning
- formatting file systems
- mounting file systems
- /etc/fstab


Overview of partitioning (8207 review)

- A partition is a section of disk forming a physical volume that contain a filesystem, or swap space, or be used as a component in LVM or RAID
- The Master Boot Record contains the Disk Partition Table, which can hold up to <u>four entries</u> due to the way in which the master boot record is structured
 - With certain specialty tools, you can create more than four partitions, but we'll stick to the MSDOS partition table format
- Each Disk Partition Table entry describes a partition by specifying its:
 - first cylinder
 - last cylinder
 - whether it is bootable
 - a partition type identifier.

Partitioning

- We deal primarily with the MSDOS Partition Table type
- GPT partition tables getting common: GUID Partition Table
- Globally Unique IDentifier (but back to MSDOS Tables...)
- Up to four Primary Partitions are possible in a single table
- At most one of the four **Primary partitions** can be an **Extended Partition**
- Logical Partitions can be created inside an Extended Partition

Identifying Partitions

Naming partitions

- > sd*x*1 sd*x*4
 - Primary Partitions recorded in the partition table

⊳ sd*x*5 – sd*x*63

Logical partitions

Note: You can have up to 4 primary partitions created in your system, while there can be only one extended partition.

Options for Partitioning

- DOS fdisk program
 - Very limited Linux support
- Linux fdisk program (we use this)
 - similar to DOS fdisk, but more features available
 - can only be used under Linux/UNIX
- parted can handle more partition table types (e.g. GPT)
- Disk Druid program
 - Part of the Fedora installation system
 - Cannot be run on its own
- **gparted** (Fedora, Ubuntu)

- Gnome Partitioning Editor: GUI based partitioning
- only runs from within Linux/UNIX

Linux fdisk command

> fdisk [options] device

- command-line partition table manipulator for Linux
- allows for viewing or modifying existing partition table and/or creating new partition(s) for a specified device
- can set Partition Type for most of the common files systems in use today
- fdisk –l /dev/sda

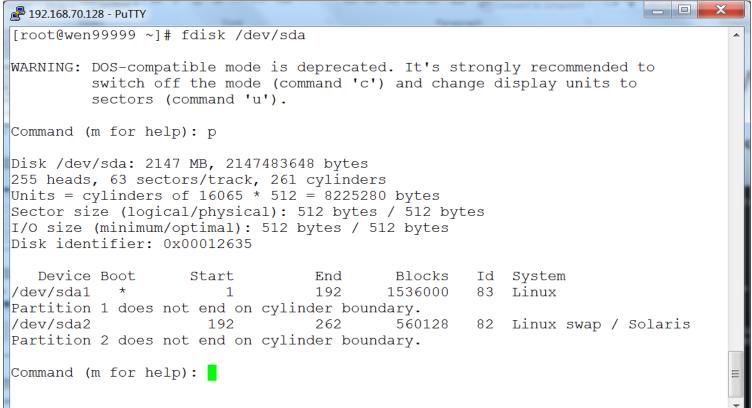
Add a disk

- power down machine (or virtual machine)
- add hard disk
- power up machine
- verify the new disk was detected (following slide)
- if the disk was brand new, it won't be partitioned (our example is this case)
- if the disk is being reused, be sure you can identify its partitions and you do not need the data

dmesg: kernel ring buffer

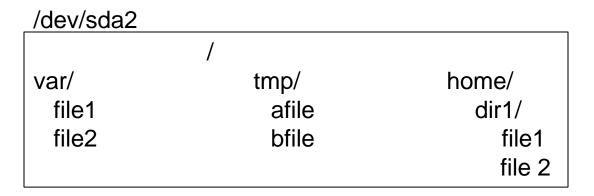
- http://teaching.idallen.com/cst8207/14w/no tes/580_system_log_files.html
- kernel messages are kept in a ring buffer
- common way to access the boot messages, including device discovery
- dmesg
- example: look for disk discovery:
 - dmesg | grep sd
- (another way): look at disks/partitions that the kernel knows about:
 - cat /proc/partitions

dmesg


🖻 wen99999@centOS65:~
[wen99999@centOS65 ~]\$ dmesg grep sd
sd 2:0:0:0: [sda] 41943040 512-byte logical blocks: (21.4 GB/20.0 GiB)
sd 2:0:0:0: [sda] Write Protect is off
sd 2:0:0:0: [sda] Mode Sense: 61 00 00 00
sd 2:0:0:0: [sda] Cache data unavailable
sd 2:0:0:0: [sda] Assuming drive cache: write through
sd 2:0:0:0: [sda] Cache data unavailable
sd 2:0:0:0: [sda] Assuming drive cache: write through
sda: sda1 sda2
sd 2:0:0:0: [sda] Cache data unavailable
sd 2:0:0:0: [sda] Assuming drive cache: write through
sd 2:0:0:0: [sda] Attached SCSI disk
dracut: Scanning devices sda2 for LVM logical volumes vg centos65/lv swap vg ce
ntos65/lv_root
sd 2:0:0:0: Attached scsi generic sg1 type 0
EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts:
sd 2:0:0:0: [sda] CDB: Write(10): 2a 00 01 14 5d 00 00 00 10 00
sd 2:0:0:0: [sda] CDB: Write(10): 2a 00 00 11 56 78 00 00 08 00
sd 2:0:0:0: [sda] CDB: Write(10): 2a 00 01 14 5e 88 00 00 10 00
sd 2:0:0:0: [sda] CDB: Write(10): 2a 00 00 11 56 78 00 00 08 00
[wen99999@centOS65 ~]\$

/proc/partitions

X # wen99999@centOS65:~ [wen99999@centOS65 ~]\$ cat /proc/partitions . major minor #blocks name 20971520 sda 8 0 8 1 512000 sda1 2 20458496 sda2 8 0 18391040 dm-0 253 253 1 2064384 dm-1 [wen99999@centOS65 ~]\$ Ε


Create partition on new disk

use fdisk to partition the new disk

File systems (8207 review)

http://teaching.idallen.com/cst8207/14w/no tes/720_partitions_and_file_systems.html

/dev/sda3

/		
wjiang/	idallen/	donellr/
file1	afile	file2
file	file	

mount /dev/sda3 /home

/dev/sda2				
	/			/dev/sda3
var/ file1 file2	tmp/ afile bfile	home/ wjiang/ file1 file	idallen/ afile file	donellr/ file2

the /home directory name still on /dev/sda2
the contents of /home are on /dev/sda3
the previous contents of /home are hidden

touch /home/donellr/file3

/dev/sda2				
	/			/dev/sda3
var/ file1 file2	tmp/ afile bfile	home/ wjiang/ file1 file	idallen/ afile file	donellr/ file2 file3

umount /dev/sda3

/dev/sda2

/00//3002		
	/	
var/	tmp/	home/
file1	afile	dir1/
file2	bfile	file1
		file 2

/dev/sda3

/		
wjiang/	idallen/	donellr/
file1	afile	file2
file	file	file3

/etc/fstab

- > fsck, mount, and umount use this file
- man 5 fstab
- note that records for swap space appear in /etc/fstab, although swap space is not a filesystem (files are not stored in swap space)
- first field: device name
- second field: mount point
- third field: type
- fourth field: mount options
- fifth field: backup related (dump program)
- sixth field: file system check order

/etc/fstab commands

- ▶ mount -a
 - issued as part of the boot process
 - all file systems listed in /etc/fstab will be mounted accordingly (except those with "noauto" option or "ignore" file system type)
- mount <mount point>
 - mount will consult /etc/fstab to find the device and options for that mount point, and mount it
- > mount <device>
 - mount will consult /etc/fstab to find the mount point and options for that mount point, and mount it

/etc/fstab: device name

- device name, the first field, names the block special device (e.g. /dev/sda1) on which the file system resides
- the first field can also be expressed in terms of LABEL or UUID (e.g. LABEL=root) (e.g. see the /etc/fstab on our CentOS 6.5 machines)
 - blkid command prints the UUIDs of the system's block devices
 - e2label command prints/sets file system labels

/etc/fstab: mount point

- The mount point is the directory on which the file system should be mounted
- swap is not a file system but is still controlled by /etc/fstab, so the mount point is none

/etc/fstab: file system type

- > ext4 is the file system type we use often
- >/proc/filesystems contains the list of file systems supported by the currently running kernel
- swap for swap space
- ignore for an unused filesystem
- none for bind mounts

/etc/fstab: mount options

- fourth field in /etc/fstab
- expressed as a comma-separated list
- b different file systems support different options (see man 8 mount)
- defaults: a set of default options
- example options common to all file system types:
 - $\circ\,$ noauto: do not mount when "mount -a" called
 - user: allow a user to mount
 - owner: allow device owner to mount

/etc/fstab: options (cont'd)

mount options

- on CentOS 6.5, "defaults" means
 - rw: read and write
 - dev: interpret device nodes
 - suid: setuid and setgid bits take effect
 - exec: permit execution of binaries
 - auto: mount automatically due to "mount -a"
 - nouser: regular users cannot mount
 - async: file I/O done asynchronously
 - relatime: update access times a certain way
- other options:
 - these are for quota utilities to see rather than mount
 - usrquota
 - grpquota

/etc/fstab: dump

- the dump program uses this field to determine which file systems should be backed up by the dump command
- the dump program can back up an entire file system to tape, for example
- dump supports incremental backups
- when restoring, it can provide an index of what's in the file system, do partial restores, etc
- we don't use dump in this course

/etc/fstab: fsck order

- the sixth and last field is used to determine the order in which file system checks are done at boot
- root file system: 1
- other file systems: 2
- no fsck: 0

/etc/mtab and /proc/mounts

- /etc/mtab is used by mount and umount to keep track of what is currently mounted
- mount command (no args) prints this file
- /proc/mounts is the kernel's list of what's mounted, and might be more up-to-date than /etc/mtab

Adding a disk

- # migrating the /usr directory to be a separate partition on new disk
- shut down machine
- connect new disk to machine
- power on machine
- partition new disk (fdisk command)
- make filesystem in new partition (mkfs command)
- single user mode (shutdown command)
- ensure target directory is backed up
- move the target directory out of way (/usr to /usr1) (mv command)
- create the mount point (to replace dir we just moved, same name)
- mount new filesystem (mount command)
- /usr1/bin/rsync -aHv /usr1/. /usr (notice where rsync is!)
- add a record for the new filesystem /etc/fstab
- exit, to return to runlevel 3

remove /usr1 (content should be backed up)

device busy

when trying to unmount a filesystem, you might get an error:

umount: /dirname: device is busy

- probably some process is using the filesystem (it's busy -- make sure you're not in that directory!)
- > lsof /mountpoint # list open files in the filesystem mounted on /mountpoint

lsof +D /directory

this will show you what processes are using the directory or (+D) any directory under it

lsof and fuser

- Note the difference between a mountpoint and a directory
 - mountpoint: both of these commands will apply to the entire filesystem mounted there
 - directory: both of these commands will apply to just that directory, not recursively every subdirectory underneath it
- summary of lsof:
 - http://www.thegeekstuff.com/2012/08/lsof-command-examples/
- fuser: similar in purpose to lsof
- examples:
 - fuser /mountpoint # all processes using the filesystem mounted at /mountpoint
 - fuser /home/dir # all processes using the directory dir
- summary of fuser:
 - http://www.thegeekstuff.com/2012/02/linux-fuser-command/