
Review of Fundamentals (cont’d)

1

 change your password on CLS if you haven’t
already

 the filesystem

 access permissions

 symbolic links

 hard links

2

 Variables for general use (variables that are
not environment variables) have lower case
names

 Environment variables are indicated by their
UPPER CASE names: SHELL, VISUAL, etc

 It's usually best to put variable expansions
inside double quotes, to protect any special
characters that might be inside the variable:

echo "$somevar"
◦ if somevar contained the * character, the double

quotes stop the shell from globbing it

3

 set the variable myvar to have value value

myvar=value

 Note, to make this variable setting visible in
sub processes we use export

export myvar=value

or

myvar=value

export myvar

4

◦ set the myvar variable to have a null value, then run
the value command with that variable setting in
effect

myvar= command

 Notice that if you try mistakenly use this to
try to set the value of myvar to value

myvar= value

 in this case you are actually trying to run a
command called value

5

The usual way to use this mechanism is
something like

VISUAL=nano vipw

 This means to set the value of the
environment VISUAL variable to nano, and
use that while the vipw command runs

6

◦ set the myvar variable to have a null value, then run
the value command with that variable setting in
effect

myvar= value

◦ run the myvar command with one argument, namely
=value

myvar =value

 run the myvar command with two arguments,
namely = and value

myvar = value

7

 Sobel, Chapter 6

 160_pathnames.html Unix/Linux Pathnames (absolute, relative, dot, dot dot)

 450_file_system.html Unix/Linux File System - (correct explanation)

 460_links_and_inodes.html Hard links and Unix file system nodes (inodes)

 460_symbolic_links.html Symbolic Links - Soft Links - Symlinks

 500_permissions.html Unix Modes and Permissions

 510_umask.html Umask and Permissions

8

http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html

9

10

inode 5242914
drwxr-x---
access time
modification time
change time
…etc…

. inode 5242914

..

.bash_history inode 5242915

.bash_profile inode 5242946

…etc… …etc…

inode 5242946 -
rw-rw-r-- access
time
modification time
change time
…etc…

data blocks for
the file
there is no
filename here
the filename(s)
(at least one) are
stored in
directories

11

inode 5242914
drwxr-x---
access time
modification time
change time
…etc…

. inode 5242914

..

.bash_history inode 5242915

.bash_profile inode 5242946

…etc… …etc…

Need read (r) on

directory to read this

column

Need search (x) on

directory to access this

column

Need write (w) and

search (x) on directory

to change first column

12

inode 5242946
-rw-rw-r--
access time
modification time
change time
…etc…

data blocks for
the file
there is no
filename here
the filename(s)
(at least one) are
stored in
directories

Need search (x) on

directory this file is in

to access this info on

the file’s inode

Need read (r) / write

(w) / execute (x) on file

to read / write / execute

this file (contents)

13

Information given by long listing: ls -l

10 characters

 file type as the first letter

 access modes (remaining letters)

Link count

 number of links to this file or directory

User-owner Login Name

 user who owns the file/directory

 based on owner UID

User-owner Group Name

 group who owns the file/directory

 based on owner GID

File Size

 size (in bytes or K) of the file/directory

Date/Time Modified

date and time when last created / modified / saved

File Name

 actual file/directory name

 Linux recognizes and identifies several file types,

which is coded into the first letter of the first field of

information about the file:

 - (dash)a regular file

 b block device special file

 c character device special file

 d a directory

 l a symbolic (soft) link

 p a named pipe or FIFO

 s socket special filename

 In Linux, 3 types of access permissions or privileges

can be associated with a file:

– read (r) grants rights to read a file

– write (w) grants rights to write to, or change, a file

– execute (x) grants rights to execute the file (to run

the file as a command)

 All 3 permissions can then be applied to each of 3

types of users:

– User: owner of the file

– Group: group to which user must belong to gain

associated rights

– Others: not User and not member of Group

(sometimes called “World” or “Everybody”)

r w x Meaning

0 0 0 0 No permission

0 0 1 1 Execute-only permission

0 1 0 2 Write-only permission

0 1 1 3 Write and execute permissions

1 0 0 4 Read-only permission

1 0 1 5 Read and execute permissions

1 1 0 6 Read and write permissions

1 1 1 7 Read, write and execute permissions

Octal

Value

Octal representation of permissions

 The same three types of access permissions or

privileges are associated with a directory, but with

some differences:

– read (r) rights to read the directory

– write (w) rights to create or remove in the directory

– execute/search (x) rights to access the directory

meaning, cd into the directory, or access inodes it contains, or

“pass through”

All three permissions can then be applied to each of

three types of users as before.

– User owner/creator of the file

– Group group to which user must belong

– Others everyone else (Rest-of-world)

 Three special access bits. These can be combined as

needed.

 SUID - Set User ID bit

 When this bit is set on a file, the effective User ID of a process

resulting from executing the file is that of the owner of the file,

rather than the user that executed the file

 For example, check the long listing of /usr/bin/passwd – the

SUID bit makes this program run as root even when invoked by

a regular user – allowing regular users to change their own

password

chmod 4xxx file-list

chmod u+s file-list

 SGID - Set Group ID bit

 Similar to SUID, except an executable file with this bit set will

run with effective Group ID of the owner of the file instead of the

user who executed the file.

chmod 2xxx file-list

chmod g+s file-list

 sticky bit (restricted deletion flag)

 The sticky bit on a directory prevents unprivileged users from

removing or renaming a file in the directory unless they are the

owner of the file or the directory

 for example, /tmp is a world-writeable directory where all users

need to create files, but only the owner of a file should be able to

delete it.

 without the sticky bit, hostile users could remove all files in /tmp;

whereas with the sticky bit, they can remove only their own files.

chmod 1xxx dir-list

chmod +t dir-list

 The permissions a user will have is determined in this way:

 If the user is the owner of the file or directory, then the

user rights are used.

 If the user is not the owner but is a member of the group

owning the file or directory, then the group rights are

used.

 If the user is neither the owner nor a part of the group

owning the file, then the other rights are used.

 NOTE: It is possible to give the “world” more permissions

that the owner of the file. For example, the unusual
permissions -r--rw-rw- would prevent only the owner

from changing the file – all others could change it!

 The permissions assigned to newly created files or

directories are determined by the umask value of your

shell.

 Commands:

 umask - display current umask

 umask xyz - sets new umask to an octal value xyz

 permissions on a newly created file or directory are

calculated as follows:

 start with a “default” of 777 for a directory or 666 for a file

 for any 1 in the binary representation of the umask, change the

corresponding bit to 0 in the binary representation of the default

 umask is a reverse mask: the binary representation

tells you what bits in the 777 or 666 default will be 0 in

the permissions of the newly created file or directory

 if umask is 022
◦ binary umask representation: 000010010 = 022

◦ default file permissions 666: 110110110

◦ permissions on new file: 110100100 = 644

 if umask is 002
◦ binary umask representation: 000000010 = 002

◦ default file permissions 666: 110110110

◦ permissions on new file: 110110100 = 664

 if umask is 003
◦ binary umask representation: 000000011 = 003

◦ default file permissions 666: 110110110

◦ permissions on new file: 110110100 = 664

24

 notice that for files, a umask of 003 ends up
doing the same thing as a umask of 002

 Why?

25

 if umask is 022
◦ binary umask representation: 000010010 = 022

◦ default dir permissions 777: 111111111

◦ permissions on new dir : 111101101 = 755

 if umask is 002
◦ binary umask representation: 000000010 = 002

◦ default dir permissions 777: 111111111

◦ permissions on new dir : 111111101 = 775

 if umask is 003
◦ binary umask representation: 000000011 = 003

◦ default dir permissions 777: 111111111

◦ permissions on new dir : 111111100 = 774

26

 notice that for directories, a umask of 003
gives different results than a umask of 002

 Why?

27

 It is important for the Linux file system manager to govern

permissions and other file attributes for each file and

directory, including

– ownership of files and directories

– access rights on files and directories

– The 3 timestamps seen in stat (man stat)

 The information is maintained within the file system

information (inodes) on the hard disk

 This information affects every file system action.

 chown owner[:group] files

 Change ownership of files and directories (available for

root only)

Examples:

chown guest:guest file1 dir2

 change ownership of file1 and dir2 to user guest and

group guest

chown guest dir2

 change ownership of dir2 to user guest but leave the

group the same

chown :guest file1

 change ownership of file1 to group guest but leave the

user the same (can also use chgrp)

 chmod permissions files

 Explicitly change file access permissions

Examples:

chmod +x file1

 changes file1 to have executable rights for

user/group/other, subject to umask

chmod u+r,g-w,o-rw file2

 changes file2 to add read rights for user, remove write

rights for group and remove both read and write rights for

others

chmod 550 dir2

 changes dir2 to have only read and execute rights for

user and group but no rights for other

 create a command with basic scripting
◦ put “#!/bin/sh –u” at very beginning of file

◦ PATH=/bin:/usr/bin ; export PATH

◦ umask 022

◦ put commands in file

◦ make file executable

 put the file in a directory that is in $PATH

 http://teaching.idallen.ca/cst8207/14w/notes/400_search_path.html

 Not a good idea to put “.” in PATH

 Security implications of putting “current directory” , “.” in PATH

 PATH=.:$PATH

 demonstration of how the bad guy can arrange for you to inadvertently
run their malicious commands as you

31

http://teaching.idallen.ca/cst8207/12f/notes/400_search_path.html
http://teaching.idallen.ca/cst8207/12f/notes/400_search_path.html

