
Regular Expressions

1

 POSIX character classes

 Some Regular Expression gotchas

 Regular Expression Resources

 Assignment 3 on Regular Expressions

 Basic Regular Expression Examples

 Extended Regular Expressions

 Extended Regular Expression Examples

2

 Character classes are lists of characters inside
square brackets

 The work the same in regex as they do in
globbing

 Character class expressions always match
EXACTLY ONE character (unless they are
repeated by appending '*')

 [azh] matches "a" or "h" or "z"

3

 Non-special characters inside the square
brackets form a set (order doesn't matter,
and repeats don’t affect the meaning):
◦ [azh] and [zha] and [aazh] are all equivalent

 Special characters lose their meaning when
inside square brackets, but watch out for ^,
], and – which do have special meaning
inside square brackets, depending on where
they occur

4

 ^ inside square brackets makes the character
class expression mean "any single character
UNLESS it's one of these"

 [^azh] means "any single character that is
NOT a, z, or h"

 ^ has its special "inside square brackets"
meaning only if it is the first character inside
the square brackets

 [a^zh] means a, h, z, or ^

 Remember, leading ^ outside of square
brackets has special meaning "match
beginning of line"

5

] can be placed inside square brackets but it
has to be first (or second if ^ is first)

 []azh] means], a, h, or z

 [^]azh] means "any single character that is
NOT], a, h, or z"

 Attempting to put]inside square brackets in
any other position is a syntax error:
◦ [ab]d] is a failed attempt at [ab][d]

◦ [] is a failed attempt at []]

6

 - inside square brackets represents a range
of characters, unless it is first or last

 [az-] means a, z, or -

 [a-z] means any one character between a
and z inclusive (but what does that mean?)

 "Between a and z inclusive" used to mean
something, because there was only one locale

 Now that there is more than one locale, the
meaning of "between a and z inclusive" is
ambiguous because it means different things
in different locales

7

 i18n basically means "support for more than one locale"

 Not all computer users use the same alphabet

 When we write a shell script, we want it to handle text and filenames
properly for the user, no matter what language they use

 In the beginning, there was ASCII, a 7 bit code of 128 characters

 Now there’s Unicode, a table that is meant to assign an integer to
every character in the world

 UTF-8 is an implementation of that table, encoding the 7-bit ASCII
characters in a single byte with high order bit of 0

 The 128 single-byte UTF-8 characters are the same as true ASCII
bytes (both have a high order bit of 0)

 UTF-8 characters that are not ASCII occupy more than one byte, and
these give us our accented characters, non-Latin characters, etc

 Locale settings determine how characters are interpreted and
treated, whether as ASCII or UTF-8, their ordering, and so on

8

 A locale is the definition of the subset of a user's environment that
depends on language and cultural conventions.

 For example, in a French locale, some accented characters qualify as
'lower case alphabetic", but in the old "C" locale, ASCII a-z contains
no accented characters.

 Locale is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behavior
of components of the system.

 Category names correspond to the following environment variable
names (the first three especially can affect the behavior of our shell
scripts):
◦ LC_ALL: Overrides any individual setting of the below categories.

◦ LC_CTYPE: Character classification and case conversion.

◦ LC_COLLATE: Collation order.

◦ LC_MONETARY: Monetary formatting.

◦ LC_NUMERIC: Numeric, non-monetary formatting.

◦ LC_TIME: Date and time formats.

◦ LC_MESSAGES: Formats of informative and diagnostic messages and interactive
responses.

9

$ export LC_ALL=C

$ echo *

A B C Z a b c z

$ echo [a-z]*

a b c z

$ export LC_ALL=en_CA.UTF-8

$ echo *

A a B b C c Z z

$ echo [a-z]*

a B b C c Z z

$

10

 Do not use ranges in bracket expressions

 We now use special symbols to represent the
sets of characters that we used to represent
with ranges.

 These all start with [: and end with :]

 For example lower case alphabetic characters
are represented by the symbol [:lower:]
◦ [[:lower:]] matches any lower case alpha char

◦ [AZ[:lower:]12] matches A, Z, 1, 2, or any
lower case alpha char

11

 [:alnum:] alphanumeric characters

 [:alpha:] alphabetic characters

 [:cntrl:] control characters

 [:digit:] digit characters

 [:lower:] lower case alphabetic characters

 [:print:] visible characters, plus [:space:]

 [:punct:] Punctuation characters and other symbols
◦ !"#$%&'()*+,\-./:;<=>?@[]^_`{|}~

 [:space:] White space (space, tab)

 [:upper:] upper case alphabetic characters

 [:xdigit:] Hexadecimal digits

 [:graph:] Visible characters (anything except spaces
and control characters)

12

 POSIX character classes go inside […]

 examples
◦ [[:alnum:]] matches any alphanumeric character

◦ [[:alnum:]}] matches one alphanumeric or }

◦ [[:alpha:][:cntrl:]] matches one alphabetic or
control character

 Take NOTE!
◦ [:alnum:] matches one of a,:,l,n,u,m (but grep on

the CLS will give an error by default)

◦ [abc[:digit:]] matches one of a,b,c, or a digit

13

 The exact content of each character class
depends on the local language.

 Only for plain ASCII is it true that "letters"
means English a-z and A-Z.

 Other languages have other "letters", e.g. é, ç,
etc.

 When we use the POSIX character classes, we
are specifying the correct set of characters for
the local language as per the POSIX
description

14

 Remember any match will be a long as
possible
◦ aa* matches the aaa in xaaax just once, even

though you might think there are three smaller
matches in a row

 Unix/Linux regex processing is line based
◦ our input strings are processed line by line

◦ newlines are not considered part of our input string

◦ we have ^ and $ to control matching relative to
newlines

15

 expressions that match zero length strings
◦ remember that the repetition operator * means

"zero or more"

◦ any expression consisting of zero or more of
anything can also match zero

◦ For example, x*, "meaning zero or more x
characters", will match ANY line, up to n+1 times,
where n is the number of (non-x) characters on that
line, because there are zero x characters before and
after every non-x character

◦ grep and regexpal.com cannot highlight matches
of zero characters, but the matches are there!

16

 quoting (don't let the shell change regex
before grep sees the regex)

$ mkdir empty

$ cd empty

$ grep [[:upper:]] /etc/passwd | wc

 503 2009 39530

$ touch Z

$ grep [[:upper:]] /etc/passwd | wc

 7 29 562

$ touch A

$ grep [[:upper:]] /etc/passwd | wc

 87 343 7841

$ chmod 000 Z

$ grep [[:upper:]] /etc/passwd | wc

grep: Z: Permission denied

 87 343 7841

17

 To explain the previous slide, use echo to
print out the grep command you are actually
running:

$ echo grep [[:upper:]] /etc/passwd

grep A Z /etc/passwd

$ rm ?

$ echo grep [[:upper:]] /etc/passwd

grep [[:upper:]] /etc/passwd

18

 we will not use range expressions

 we'll standardize on en_CA.UTF-8 so that the
checking script for assignments always sees
things formatted the same way

19

 http://www.regular-
expressions.info/tutorial.html

 http://lynda.com

 http://regexpal.com

 http://teaching.idallen.com/cst8177/14w/no
tes/000_character_sets.html

 http://www.regular-
expressions.info/posixbrackets.html

20

http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://lynda.com
http://regexpal.com/
http://regexpal.com/
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html

 Some students are already comfortable with
the command line

 For those who aren't, yet another tutorial
source that might help is Lynda.com

 All Algonquin students have free access to
Lynda.com

 Unix for Mac OSX users:
http://www.lynda.com/Mac-OS-X-10-6-tutorials/Unix-for-Mac-OS-X-
Users/78546-2.html

21

 Lynda.com has a course on regular expressions

 The problem is that it covers our material as well as some
more advanced topics that we won't cover

 It is a good presentation, and the following chapters should
have minimal references to the "too advanced" material
◦ Chapter 2 Characters

◦ Chapter 3 Character Sets

◦ Chapter 4 Repetition Expressions

 On campus use this URL:

http://www.lynda.com/Regular-Expressions-tutorials/Using-Regular-
Expressions/85870-2.html

 Off campus use this URL:

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-
tutorials/Using-Regular-Expressions/85870-2.html

22

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html

 Assignment 3 asks you to write shell scripts

 These are simple scripts: just the script header,
and a grep command where coming up with the
regex is your work to be done

 You don't need extended regular expression
functionality, and the checking script will disallow
it

 We will cover extended regular expression
functionality below

23

 phone number
◦ 3 digits, dash, 4 digits
[[:digit:]][[:digit:]][[:digit:]]-[[:digit:]][[:digit:]][[:digit:]][[:digit:]]

 postal code
◦ A9A 9A9
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

 email address (simplified, lame)
◦ someone@somewhere.com

◦ domain name cannot begin with digit
[[:alnum:]_-][[:alnum:]_-]*@[[:alpha:]][[:alnum:]-]*\.[[:alpha:]][[:alpha:]]*

24

mailto:someone@somewhere.com

 any line containing only alphabetic characters
(at least one), and no digits or anything else
^[[:alpha:]][[:alpha:]]*$

 any line that begins with digits (at least one)
◦ In other words, lines that begin with a digit
^[[:digit:]]

^[[:digit:]].*$ would match the exact same lines in grep

 any line that contains at least one character of
any kind

.

^..*$ would match the exact same lines in grep

25

26

The generic syntax: [#1]operation[#2]target

Examples:

27

Ref: http://www.tutorialspoint.com/unix/unix-vi-editor.htm

 To do search and replace in vi, can search for
a regex, then make change, then repeat
search, repeat command:

 in vi (and sed, awk, more, less) we
delimit regular expressions with /

 capitalize sentences
◦ any lower case character following by a period and

two spaces should be replaced by a capital

◦ search for /\. [[:lower:]]/

◦ then type 4~

◦ then type n. as many times as necessary

◦ n moves to the next occurrence, and . repeats the
capitalization command

28

 uncapitalize in middle of words
◦ any upper case character following a lower case

character should be made lower case

◦ type /[[:lower:]][[:upper:]]

◦ notice the second / is optional and not present here

◦ then type l to move one to the right

◦ type ~ to change the capitalization

◦ type nl. as necessary

◦ the l is needed because vi will position the cursor
on the first character of the match, which in this
case is a character that doesn't change.

29

 Now three kinds of matching
1. Filename globbing

 used on shell command line, and shell matches these

 patterns to filenames that exist

 used with the find command (quote from the shell)

2. Basic Regular Expressions, used with

 vi (use delimiter)

 more (use delimiter)

 sed (use delimiter)

 awk (use delimiter)

 grep (no delimiter, but we quote from the shell)

3. Extended Regular Expressions

 less (use delimiter)

 grep –E (no delimiter, but quote from the shell)

 perl regular expressions (not in this course)

30

 ls a*.txt # this is filename globbing
◦ The shell expands the glob before the ls command runs

◦ The shell matches existing filenames in current directory
beginning with 'a', ending in '.txt'

 grep 'aa*' foo.txt # regular expression
◦ Grep matches strings in foo.txt beginning with 'a' followed

by zero or more 'a's

◦ the single quotes protect the '*' from shell filename
globbing

 Be careful with quoting:
◦ grep aa* foo.txt # no single quotes, bad idea

 shell will try to do filename globbing on aa*, changing it into
existing filenames that begin with aa before grep runs: we don't
want that.

31

 All of what we've officially seen so far, except
that one use of parenthesis many slides back,
are the Basic features of regular expressions

 Now we unveil the Extended features of
regular expressions

 In the old days, Basic Regex implementations
didn't have these features

 Now, all the Basic Regex implementations
we'll encounter have these features

 The difference between Basic and Extended
Regular expressions is whether you use a
backslash to make use of these Extended
features

32

33

Basic Extended Repetition Meaning

* * zero or more times

\? ? zero or one times

\+ + one or more times

\{n\} {n} n times, n is an integer

\{n,\} {n,} n or more times, n is an integer

\{n,m\} {n,m} at least n, at most m times, n and m are
integers

 can do this with Basic regex in grep with –e
◦ example: grep –e 'abc' –e 'def' foo.txt

◦ matches lines with abc or def in foo.txt

 \| is an infix "or" operator

 a\|b means a or b but not both

 aa*\|bb* means one or more a's, or one or
more b's

 for extended regex, leave out the \, as in a|b

34

 repetition is tightest (think exponentiation)
◦ xx* means x followed by x repeated, not xx

repeated

 concatenation is next tightest (think
multiplication)
◦ aa*\|bb* means aa* or bb*

 alternation is the loosest or lowest
precedence (think addition)

 Precedence can be overridden with
parenthesis to do grouping

35

 \(and \) can be used to group regular
expressions, and override the precedence
rules

 For Extended Regular Expressions, leave out
the \, as in (and)

 abb* means ab followed by zero or more b's

 a\(bb\)*c means a followed by zero or
more pairs of b's followed by c

 abbb\|cd would mean abbb or cd

 a\(bbb\|c\)d would mean a, followed by
bbb or c, followed by d

36

37

Operation Regex Algebra

grouping () or \(\) parentheses
brackets

repetition * or ? or + or {n} or {n,} or {n,m}
* or \? or \+ or \{n\} or \{n,\} or \{n,m\}

exponentiation

concatenation ab multiplication

alternation | or \| addition

 To remove the special meaning of a meta
character, put a backslash in front of it

 * matches a literal *

 \. matches a literal .

 \\ matches a literal \

 \$ matches a literal $

 \^ matches a literal ^

 For the extended functionality,
◦ backslash turns it on for basic regex

◦ backslash turns it off for extended regex

38

 Another extended regular expression feature

 When you use grouping, you can refer to the
n'th group with \n

 \(..*\)\1 means any sequence of one or
more characters twice in a row

 The \1 in this example means whatever the
thing between the first set of \(\) matched

 Example (basic regex):

\(aa*\)b\1 means any number of a's
followed by b followed by exactly the same
number of a's

 39

 phone number
◦ 3 digits, optional dash, 4 digits

◦ we couldn't do optional single dash in basic regex
[[:digit:]]{3}-?[[:digit:]]{4}

 postal code
◦ A9A 9A9

◦ Same as basic regex
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

 email address (simplified, lame)
◦ someone@somewhere.com

◦ domain name cannot begin with digit or dash
[[:alnum:]_-]+@([[:alpha:]][[:alnum:]-]+\.)+[[:alpha:]]+

40

mailto:someone@somewhere.com

41

42

