CST8177 - Linux |l

Shell Scripting

Shells

» A shell can be used in one of two
ways:
- A command interpreter, used interactively

- A programming language, to write shell
scripts (your own custom commands)

Shell scripting

4

If we have a set of commands that we want to run
on a regular basis, we could write a script

A script acts as a Linux command, similarly to
binary programs and shell built in commands

In fact, check out how many scripts are in /bin and
/usr/bin

o file /bin/* | grep 'script'

o file /usr/bin/* | grep 'script'

As a system administrator, you can make your job
easier by writing your own custom scripts to help
automate tasks

Put your scripts in ~/bin, and they behave just like
other commands (if your PATH contains ~/bin)

~~~~~~~~~~~



Standard Script Header

» As we've already discussed, it's good practice to
use a standard header at the top of our scripts

» You could put this in a file that you keep in a
convenient place, and copy that file to be the
beginnings of any new script you create

» Or, copy an existing script that already has the
header

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

umask 022 # use 077 for secure scripts




Interpreter Magic, or Shebang

» The interpreter magic, or "shebang":

#!/bin/sh -u

- #! need to be the first two characters in the file, because
they form a magic number that tells the kernel this is a
script

- #! is followed by the absolute path of the binary program
that kernel will launch to interpret (that is, run) the script,
/bin/sh in our case, and arguments can be supplied, —u in
our case

- The —u flag tells the shell to generate an error if the script
tries to make use of a variable that's not set

- That will never happen if the script is well written and tested

- If it does happen, it's better to stop processing than continue
processing garbage.




Standard Script Header (cont'd)

» Set the PATH

» The script will run the standard commands from
the standard locations

PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

» Set the umask

» Any files the script creates should have sane
permissions, and we lean to the secure side

umask 022 # use 077 for secure scripts




stdin, stdout,stderr

» We then follow the header with commands
like the ones we type at the shell prompt.

» The stdin, stdout, stderr of the of the
commands inside the script are the stdin,
stdout, stderr of the script as it is run.

» When a command in your script prints
output to stdout, your script will print that
output to its stdout

» When a command in your script reads from
stdin, your script reads from stdin

\\\\\\\



Scripting techniques

» Today we cover the following scripting topics

» Running scripts
> arguments passed on the command line
> ways to invoke a script
» Writing scripts
° eXxamining exit status
positional parameters and receiving arguments
variables
interacting with the user
the test program for checking things
control flow with if statements, looping, etc

o

(0]

o

o

o



Arguments on the command line

» we supply arguments to our script on the
command line (as with any command args)

» command is executable and in PATH
command argl argZ2 arg3

» command. sh is executable and in PATH
command.sh argl arg2Z2 arg3

» command. sh is executable and not necessarily
In PATH

./command.sh argl arg2 arg3




Arguments on the command line

» We can also invoke the script interpreter
directly, with its own arguments

» We pass the file containing the script after the
Interpreter arguments

» The shebang line mechanism is not being
used in this form

sh —u command.sh argl argZ2 arg3
sh -u ./command.sh argl arg2 arg3
» The arguments seen by our script are
argl argZ2 arg3

10



Quoting and arguments

command "a b c¢"
> 1 argument

*a b c

command 'a b ¢"'" "d 'e "
° 2 arguments
ca b c" andd 'e f

command 'a ' b ""def"'
> 3 arguments
- a and b and "def"

command 'a b'" "¢ 'd e' f£"
° 2 arguments
cabandc 'd e' f

11



Exit Status

» Each command finishes with an exit status
» The exit status is left in the variable 2 (5?)

» A non-zero exit status normally means
something went wrong (grep is an exception)

» hoh-zero means 'false"

» A exit status of 0 normally means everything
was OK

» 0 means "true"

» grep returns 0 if a match occurred, 1 if not,
and 2 if there was an error

12



Checking Exit status

» On the command line, after running a
command we can use echo $? immediately
after a command runs to check the exit status
of that command

[tgk@kelleyt ~]1$ 1s

accounts empty rpm test.sh

[tgk@kelleyt ~]$ echo $°?

0

[tgk@kelleyt ~]$ 1s nosuchfile

ls: cannot access nosuchfile: No such file or directory
[tgk@kelleyt ~]1S$ echo $7?
2
[

tgkQRkelleyt ~]1$

13



Positional Parameters

» When our script is running, the command line
arguments are available as Positional
Parameters

» The script accesses these through variables.

» S# holds the number of arguments on the
command line, not counting the command
itself

» S0 is the name of the script itself

» $1 through $9 are the first nine arguments
passed to the script on the command line

» After $9, there's ${10}, ${11}, and so on

14



Positional Parameters (cont'd)

» $* and $@ both denote all of the arguments
and they mean different things when double

quoted:
> "$*" js one word with spaces between the

arguments
° "$@" produces a list where each argument is a

separate word

15



Positional Parameters (cont'd)

S0 Name of program

$1 - 89 Values of command line arguments 1 through 9

$* Values of all command line arguments

s@ Values of all command line arguments; each argument individu-
ally quoted if $@ is enclosed in quotes, as in “$@”

St Total number of command line arguments

$$ Process ID (PID) of current process

$? Exit status of most recent command

PID of most recent background process




Sample script

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH
umask 022

# Body of script
myvar="howdy doody"

echo "The value of \$myvar is: Smyvar"

echo "The number of arguments is: S$#"
echo "The command name is $0"

echo "The arguments are: S$*"

echo "The first argument is: $S1"

echo "The second argument is: S$2"

echo "The third argument is: $3"

#fnotice backslash

17



Sample script

» How to write a command to swap two files?
$ cat swap

#!/bin/bash

mv S1 /tmp/S$1

mv $2 S1

mv /tmp/S1 $2

$ cat itl
contents of filel
$ cat it2

contents of file?
$ swap itl it2

S cat itl
contents of file?
S cat 1it?2
contents of filel

S

18



Shift

» The shift command promotes each command

line argument by one (e.g., the value in $2
moves to $1, $3 moves to $2, etc.)

$ cat shiftargs

#!/bin/bash

echo "The args are 0 = $0, 1 = $1, 2 = s2"
shift

echo "The args are 0 = $0, 1 = $1, 2 = s$2"

shift

echo "The args are 0 = $0, 1 = $1, 2 = s2"

shift

$ shiftargs argl arg?2 arg3

The args are 0 = shiftarg, 1 = argl, 2 = arg?
The args are 0 = shiftarg, 1 = arg2, 2 = arg3
The args are 0 = shiftarg, 1 = arg3, 2 =

he previous $1 becomes inaccessible

19



shift Example

How to write a general version of the
swap command for two or more files?

swap £l f2 £f3 ... fn 1 fn
1 <--—- f2
£2 <--- f3
3 <--- f4
fn 1l <--- fn

fn <--- f1




Interacting with the user

» to get input from the user, we can use the read
builtin

» read returns an exit status of O if it successfully
reads input, or non-zero if it reaches EOF

» read with one variable argument reads a line from
stdin into the variable

» Example:
#!/bin/sh -u
read aline #script will stop, wait for user

echo "you entered: Saline"

21



Interacting with the user (cont'd)

» Use the -p option to read to supply the user
with a prompt

» Example
#!/bin/sh -u
read —-p "enter your string:" aline

echo "You entered: Saline"

22



Interacting with the user (cont'd)

» read varl puts the line the user types into the
variable varl

» read varl var2 wvar3 puts the first word of what
the user types in to varl, the second word into
var2, and the remaining words into var3

#!/bin/sh -u

read varl var2 wvar?3

echo "First word: S$Svarl"

echo "Second word: Svar2"

echo "Remaining words: Svar3"

23



Backquotes:

Command Substitution

» A command or pipeline surrounded by

backquotes causes the shell to:

> Run the command/pipeline
- Substitute the output of the command/pipeline for
everything inside the quotes

» You can use backquotes anywhere:

S whoami
wen99999

S cat test?
#!/bin/bash

user= whoami

numusers= who | wc -1
echo "Hi S$Suser! There are Snumusers users logged on."
$ ./test?

Hi wen99999! There are 6 users logged on.

24



Control Flow

» The shell allows several control
flow statements:

o 1f
cwhile
o for

25



Semantics of the if statement

{

false

expression

then-commands

26



If statement
1f listl; then it listl
. then
| listz list?
fi1 fl

» 1istl is executed, and if its exit status is O,
then 1ist2 is executed

» A 1list is a sequence of one or more
pipelines, but for now, let's say it's a
command

27



Semantics of the if and else statement

false

Y

then-commands

else-commands

>

28



if ...then ... elif

» We can include an else clause, with
commands to run if 1ist1 is false (has exit
status of hon-zero)

if listl; then if listl
list? then

else list?
list3 else

i 1li1st3

f1

29



Semantics of the if...then...elif statement

false
expression1 expression2)--------------1
true true
Y
then-commands elifi.-commands else-commands

:

QP:




if ... then ... elif

» The elif statement combines else and if to
construct a nested set of if...then...else
structure. if listl

then
list?2
elif 1l1st3
then
listd

else
1listh

31



Boolean Expressions

» Relational operators:
-eq, —-ne, -gt, -ge, -1t, -le

» File operators:

—-f file True 1f file exists and 1s not a directory
-d file True 1f file exists and 1is a directory
-s file True 1if file exists and has a size > 0

» String operators:

-z string True 1f the length of string is zero

-n string True 1f the length of string 1s nonzero
sl = s2 True 1f sl and s2 are the same

sl '= s2 True 1f sl and s2 are different

s1 True 1f s1 1s not the null string

32



Integer tests (man test)

4

INTEGER1 -eq INTEGER?2

INTEGERT is equal to INTEGER?2
INTEGER1 -ge INTEGER?2

INTEGERT is greater than or equal to INTEGER?2
INTEGER1 -gt INTEGER?2

INTEGERT is greater than INTEGER?2
INTEGERT -le INTEGER?2

INTEGERT1 is less than or equal to INTEGER?
INTEGERT -It INTEGER?2

INTEGERT is less than INTEGER2
INTEGER1T -ne INTEGER?2

INTEGERT is not equal to INTEGER?2

33



String tests (man test)

4

-n STRING

the length of STRING is nonzero
STRING equivalent to -n STRING
-z STRING

the length of STRING is zero
STRING1 = STRING2

the strings are equal
STRING1 !'= STRING?2

the strings are not equal

34



file tests (man test)

» These are just a few of them See man test for more:

>

-d FILE

FILE exists and is a directory
-e FILE

FILE exists
—f FILE

FILE exists and is a regular file
-r FILE

FILE exists and read permission is granted
-w FILE

FILE exists and write permission is granted
-X FILE

FILE exists and execute (or search) permission is granted

35



Test program

» A common command to use in the test list of
an if statement is the test command

» man test

» Examples:
» test —e /etc/passwd
» test "this" = "this"

v

test 0 —eg O
test 0 —ne 1
test 0 —-1le 1

v Vv

36



If statement with test

1f test
echo
fi

1f test
echo
else

echo

"S1" = "hello"; then
"First arg 1s hello"

"S2" = "hello"; then
"Second arg 1s hello"

"Second arg 1s not hello"

37



The program named |

[wen0O01:centOS65 ~]$ Is -li /usr/bin/test /usr/bin/|
786463 -r-xr-xr-x 1 root root 34716 22 Nov 2013 /usr/bin/|
786517 -r—-xr-xr-x 1 root root 31124 22 Nov 2013 /usr/bin/test

» notice that on OSX, [ is another name for the test program:

if [ -e /etc/passwd ]; then
echo "/etc/passwd exists"

fi

is the same as

if test —-e /etc/passwd; then

echo "/etc/passwd exists"
fi

38



Practicing with [

$[0-eq0]

$ echo $?

0

$ [ "this" = "that" ]
$ echo $?

]

$ [ "this" = "this" ]
echo $?

0

$ ["this" = "this"]
-bash: [this: command not found
$ [ "this" = "this"]
—-bash: [: missing '’

# forgot the space after [

# forgot the space before ]

39



Combining tests

( EXPRESSION )

EXPRESSION is true
| EXPRESSION

EXPRESSION is false
EXPRESSIONT -a EXPRESSION?Z

both EXPRESSION1 and EXPRESSION?Z2 are true

EXPRESSIONT -0 EXPRESSIONZ

either EXPRESSION1 or EXPRESSION?Z is true

v

v

v

v

40



And, Or, Not

» You can combine and negate expressions with:

a And
-0 Or
! Not

$ cat testlO
#!/bin/bash

if [ "who | grep gates | wc -1 -ge 1 -a "whoami != “gates" ]
then

echo "Bill 1s loading down the machine!"
else

echo "All is well!™
fi
$ testlO
Bill is loading down the machine!

41



test examples

» test is a program we run just to find out its
exit status

» The arguments to the test command specify
what we're testing

» The spaces around the arguments are
important because test will not separate

arguments for you:

o "g"™ ="a" is the same as a =a which is two args
and test wants three with the second one =

» When trying out test examples, we can run

test and find out the results by looking at $?
immediately after the test command finishes

42



test examples (cont'd)

» Alternatively, we can try any example by
putting it in an if-statement:

1f [ O —eg 1 ]; then
echo that test 1s true

else
echo that test i1is false
fi

43



test examples (strings)

» Is the value of myvar an empty (zero-length)
string?

[ —z "Smyvar" ]

» Is the value of myvar a non-empty string?
[ -n "Smyvar" ]
or

[ " $myvaru ]

44



test examples (strings cont'd)

» Is the value of myvar equal to the string

"yeS"?
[ "$myvar" — "yes" :|
or
[ "Smyvar" = yes ]
or
[ "yes" — "Smyvar" ]
or

[ yes = "Smyvar" ]

45



test examples (strings cont'd)

» Is the value of myvar NOT equal to the string

"yes"?
[ "Smyvar" != "yes" ]
or
[ ! "Smyvar" = yes ]
or
[ "yes" != "Smyvar" ]
or

[ ! yes = "Smyvar" ]

46



test examples (integers)

» Is the value of myvar a number equal to 4?
[ "Smyvar" -eqgq "4" ]
or
[ "Smyvar" -eq 4 ]

» Notice that double quotes around a number
just means the shell will not honor special
meaning, if any, of the characters inside

» Digits like 4 have no special meaning in the
first place, so double quotes do nothing

47



test examples (integers)

» Is the value of myvar a number NOT equal to

47
[ "Smyvar" -ne 4 ]
or
[ ! 4 -eq "Smyvar" ]
or
[ ! "Smyvar" -eqg 4 ]
or

[ "Smyvar" -ne 4 ]

48



test examples (integers)

» IS 00 a number equal to 0?7 yes

[ 00 —eg 0 ]
» IS 004 a number equal to 4? yes

[ 004 —eqg 4 ]
» Notice double quotes don't change anything
» Is 00 equal to 0 as strings? no
[ 00 = 0 ]

» IS 0004 equal to 4 as strings? no

[ 0004 = 4 ]

49



test examples

» IS abc a number equal to 07 error
[ abc —eg 0 ] ERROR abc is not a number

» The following is the same as [ 1 ] with
stdin redirected from file named 2

[ 1 < 2 ]

» Remember we can put redirection anywhere
in the command we want:

ls > myfile
is the same as
> myfile 1s

50



test examples (files)

» Does /etc/passwd exist?
[ —e /etc/passwd ]
» Does /etc exist?
[ —e /etc ]

» Does the value of myvar exist as a file or
directory?

[ —e "Smyvar" ]

51



test examples (files)

» IS /etc/passwd readable?
[ -r /etc/passwd ]
» Is /etc readable?
[ -r /etc ]

» Is the value of myvar readable as a file or
directory?

[ —-r "Smyvar" ]
» Not readable?

[ ! —r "Smyvar" ]

52



test (combining tests)

» If we need to check whether two files both
exist, we check for each individually, and
combine the tests with —a, meaning AND

[ —e /etc/foo —a —e /etc/bar ]

» Given a number in myvar we can check
whether it's greater than or equal to 4 AND
less than or equal to 10

[ "Smyvar" -ge 4 -a "Smyvar" -le 10

]

53



test (combining tests)

» If we need to check whether at least one of
two files exists, we check for each
individually, and combine the tests with -o,
meaning OR

[ —e /etc/foo -0 —-e /etc/bar ]

» Given a number in myvar we can check
whether it's greater than or equal to 4 OR less
than or equal to 10

[ "Smyvar" -ge 4 -o "Smyvar" -le 10 ]

54



test (not)

» We can use ! to test if something is NOT true
» Test whether /etc/passwd is NOT executable
[ ! —e /etc/passwd ]

55



test (parenthesis)

» Just like arithmetic, we use parenthesis to
control the order of operations

» Remember that ( and ) are special to the shell
so they need to be escaped or quoted from
the shell

» Check whether filel or file2 exists, and
also check whether 1 is less than 2:

[ \( —-e filel -0 —-e file2 \) -a 1 -1t 2 ]

» Without parentheses we'd be testing whether filel
exists, or whether file2 exists and 1 is less than 2

56



test (order of operations)

» Like regular expressions, to get comfortable
with the order of operations, we can borrow
our comfort with arithmetic expressions

test arithmetic alalog | comment
operation

() () \(and \) or '(" and ")' to protect from
shell

! - That's the arithmetic unary "oposite
of" operator, as in -4 or -(2+2)

-a multiplication
-0 addition

57



Example 1: capitalize.sh

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH
umask 022
echo "You passed $# arguments, and those are:$*:"
if [ $# -eq 0 ]; then

echo "You didn't give me much to work with"
else

echo —-n "Here are the arguments capitalized:"

echo "$*" | tr '[[:lower:]]' '[[:upper:]]"

fi

58



stderr versus stdout

» Often the purpose of a script is to produce
useful output, like filenames, or maybe a list
of student numbers
> this output should go to stdout
> it may be redirected to a file for storage
- we don't want prompts and error messages in there

» There may also be other output, like warning
messages, error messages, or prompts for
the user, for example
> this output should go to stderr

- we don't want this type of output to be inseparable
from the real goods the script produces

59



Error Messages

» Here is an example of a good error message
echo 1>&2 "$0: Expecting 1 argument; found S$# (S*)"
» Why is it good?

> |t redirects the message to stderr: 1>&2

> |t gives the user all the information they may need
to see what is wrong

- 50 is the name used to invoke the script (remember,
files can have more than one name so it shouldn't be
hard-coded into the script)

- S$# is the number of arguments the user passed

- $* shows the actual arguments, put in parenthesis so
the user can see spaces, etc.

60



Example 2: match.sh

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH
umask 022
if [ $# -ne 1 ]; then
echo 1>&2 "$0: Expecting 1 argument; found S$# ($*)"
else
read -p "Enter your string:" userString
if [ "SuserString”" = "$1" ]; then
echo "The string you entered is the same as the argument"
else
echo "The string you entered is not the same as the argument”
fi

fi




For loop

for name [ in word... ] ,; do list ; done

» name IS a variable name we make up

» name is set to each word. .. in turn, and list is
exectuted
» if [ in word... 1 is omitted, the positional

parameters are used instead

62



For loop example

for £ 1n hello how are you today;
echo "Operating on Sf"
done

.

do

63



While loop

while command; do
# this code runs over and over
# until command has
# non-zero exit status

done

64



While loop example

while read -p "enter a word:
echo "You entered: Sword"
done

.

word,; do

65



