
Processes

1

 elinks, mail

 processes

 nice

 ps, pstree, top

 job control, jobs, fg, bg

 signals, kill, killall

 crontab, anacron, at

2

 elinks is a text-based (character mode) web
browser

 we will use it to enable our scripts to retrieve
web pages

 in assignment 7, we use it to retrieve a
weather webpage

 elinks -dump -no-numbering -no-references <URL>

 Example

elinks -dump -no-numbering -no-references \

'http://m.weather.gc.ca/city/pages/on-118_e.html'

 Could grep this to extract information (maybe with –A option)

3

 use the mail command to send outgoing and
read incoming email on the CLS

 Sending outgoing email (bold font shows
what the user types)

$ mail username@example.com

Cc:

Subject: First Message from CLS

This is a test message.

^D

$

4

 text mode mail reader

 incoming email is stored in

 /var/spool/mail/<username>

 use the mail command to read it

 you'll see a list of messages, each preceded by a
number (the header list)

 enter a number to see that message

 enter h to see the header list again

 when you enter q, mail will quit and messages you
read will be stored in ~/mbox

 mail –f to see the messages in ~/mbox

5

 Any program we run executes as a process

 Processes have the following attributes
◦ a process id: PID

◦ a parent process id: PPID

◦ a nice number (related to priority)

◦ controlling terminal

◦ Real (RUID) and effective (EUID) user id

◦ Real (RGID) and effective (EGID) group id

 Also:
◦ a current working directory

◦ a umask value

◦ an environment (values of environment variables)

6

 We have already been using the ps command
to print out information about processes
running on the system

 ps –ef or ps aux piped to grep is common

 there are many options for printing specific
info in a specific way: man ps or ps -h

 ps –l # long format

 ps –f versus ps –fw

7

 top displays some system information, and a
list of processes, ordered on a column

 the most important keys are ?, h, and q
(according to man page)

 load average: 5min, 10min, 15min

 load average is number of processes running
or in uninterruptable state (disk IO, others)

 no exact rule, but if load average is more
than 1-1.5 times the number of CPUs, the
machine is overloaded in some way and you
have a problem (your mileage may vary)

8

 pstree: connects parents and children in a
pictorial display

 free: memory usage

 vmstat: processes, memory, and more

9

 Runnable: ready to go

 Sleeping: choosing not to go

 Stopped: suspended indefinitely, as in ^Z

 Uninterruptable Sleep: waiting on a disk I/O
operation, or similar

 Zombie or Defunct: process has completed,
but it's still in the process table waiting for
parent to take action

10

 Each process has a priority, which you can
control with the nice command

 -20 highest priority, 19 lowest priority

 nice [–n increment] command

 nice –n 10 long_command # 10 is default

 only superuser can specify negative
increments

 For processes already running:
◦ renice priority –p PID or renice –n priority –p PID

11

 your shell can run several processes for you
at once

 we can run commands in the background
◦ command &

 we can put a running command in the
background
◦ ^Z

 what jobs are there?
◦ jobs

 resume a stopped job
◦ bg %N # background, where N is a job number

◦ fg %N # foreground

12

 When we type ^C when a process is running
in the foreground, the process receives a
SIGINT signal, which by default would cause a
process to terminate.

 SIGINT: ^C (default), similar to SIGTERM

 SIGHUP: terminal has been closed

 SIGTERM: clean up if necessary, then die

 SIGKILL: die right now

 We can send these signals to a process with
the kill command

13

 kill –SIGNAL PID #send SIGNAL to process PID

 When system shuts down, it
◦ sends all processes a SIGTERM

◦ waits a few seconds (5 or 10)

◦ sends all processes a SIGKILL

 Why not just wait for the SIGTERM to finish?

 Because SIGTERM can be handled, possibly
ignored, it's optional

 SIGKILL cannot be handled – it works unless
the process is in an uninterruptible state
(maybe disk I/O, NFS)

14

 If kill -9 PID (kill –SIGKILL PID) as root doesn't
kill the process, it is in an uninterruptible
state

 if uninterruptible processes don't become
interruptible, there may be a system problem
(bad disk, misconfigured NFS filesystem, etc)

 Reboot may be the only way to get rid of
them

15

 summary of all the POSIX signals:
http://en.wikipedia.org/wiki/Unix_signal

16

 To run a command regularly and
automatically, we use the cron facility

 The cron daemon process every minute
checks to see if commands specified in
crontab files need to be run

 for now, we're concerned only with our user
crontab files, which are
◦ /var/spool/cron/*

◦ for example, /var/spool/cron/user1 is user1's
crontab file

17

 full details from man 5 crontab

◦ recall that is how we read section 5 of the manual (section 5 of the
manual is file formats)

 man crontab will give info about the crontab command (in
default section 1 of the manual)

 create a file containing your cron instructions (see next slide),
naming that file, say, myuser.crontab

 run the crontab command to submit that file's contents to be
your user's crontab file: crontab < myuser.crontab

 alternatively, you can edit your user's live crontab file:
crontab -e

18

• All fields must contain a value of some valid kind

• Field are separated by one or more spaces

• Asterisk (*) indicates the entire range

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .--------- day of month (1 - 31)

| | | .------ month (1 - 12)

| | | | .--- day of week (0 – 7, both 0 and 7 are Sunday)

| | | | |

 0 6 1 * * /home/user/bin/mycommand

 1 6 15 * * /home/user/bin/anothercommand > /dev/null 2>&1

crontab format (man 5 crontab)

19

 ranges with dash are allowed: first-last

 * means every value first-last

 lists are allowed: first,second,third

 steps indicated with '/' are allowed after
ranges or asterisk:
◦ */2 means every second one

◦ 1-7/2 means 1,3,5,7

20

 crontab –l
◦ list the contents of your current live crontab file

 crontab –e
◦ edit the contents of your current live crontab file

 crontab
◦ read the new contents of for your crontab file from

stdin

 crontab –r
◦ remove your current crontab file

21

 see man 5 crontab for example crontab

 really, see the example: man 5 crontab

 things to watch out for
◦ input for your commands (they run without anyone to type

input)

◦ output of commands (if you don't (re)direct output, the
output will be emailed – better if you handle it)

◦ error output of commands (same as for output above)

◦ summary: it's best if your commands in a crontab are
arranged with input and output already handled, not relying
on output to be emailed by cron

◦ if you want to email, do it explicitly in your command
somehow, and test that command before putting it into
your crontab

22

 at command runs a set of commands at a later time
 at command takes a TIME parameter and reads the set of

commands from standard input

 example (run commands at 4pm 3 days from now)

◦ at 4pm + 3 days

 rm –f /home/usr/foo

 touch /home/usr/newfoo

 ^D

 other at-related commands: atrm, atq

 for details: man at

 as with cron, you must be aware of how your
commands will get their input (if any) and what will
happen to their output (if any)

23

