
Review of Fundamentals

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 The CST8207 course notes

 GPL

 the shell

 SSH (secure shell)

 the Course Linux Server

 RTFM

 vi

 general shell review

2

 Linux I introduces many fundamental topics
to give you a good basic foundation

 In Linux II we build on that same foundation
so it will be good to refer back to the course
notes:

http://teaching.idallen.com/cst8207/13f/notes/

CST8177 – Todd Kelley 3

 120_shell_basics.html

 140_man_page_RTFM.html

 150_arguments_and_options.html

 160_pathnames.html

 170_home_and_HOME.html

 180_finding_files.html

 185_find_and_xargs.html

 190_glob_patterns.html

 200_redirection.html

 300_vi_text_editor.html

 320_shell_variables.html

 350_startup_files.html

 400_search_path.html

CST8177 – Todd Kelley 4

 440_quotes.html

 450_file_system.html

 455_links_and_inodes.html

 457_disk_usage.html

 460_symbolic_links.html

 500_permissions.html

 510_umask.html

 520_package_management.html

 580_system_log_files.html

 600_processes_and_jobs.html

 630_crontab_at_job_scheduler.html

 700_users_and_groups.html

 720_partitions_and_file_systems.html

 750_booting_and_grub.html

 900_unix_command_list.html

CST8177 – Todd Kelley 5

 You should be aware that we all use GNU and Linux
(and other Free software) under license

 Q: who cares? A: your employer

 When you receive a copy of GPL software, you are
automatically granted a license from the copyright
holder, and you have obligations

 Roughly, If you don’t give copies to others, no worries

 Roughly, If you give copies to others
◦ 1. You must give the source code along with binary; OR

◦ 2. You must provide a written offer to provide source code; OR

◦ 3. for other special conditions or possibilities, read the GPL

CST8177 – Todd Kelley 6

 When you get a job, it will be incredibly important
that your employer (through your work for them) is
not found to be out of compliance with the GPL

 It gets serious when you (on behalf of your
employer through their facilities) provide copies of
software to others because you may inadvertently
deny those others some rights

 Do not consider this legal advice: when/if the time
comes, consult your employer’s legal department

 “We always considered Open Source software to be
a free-for-all under all circumstances. Why didn’t
anyone warn us?” -- I just did. That is all this was
for.

CST8177 – Todd Kelley 7

 http://teaching.idallen.com/cst8207/13f/notes/120_shell_basics.html

 The shell is a program that is executed for us automatically
when we log in, and we control by typing text for it to read

 Normally we are asking the shell to run programs for us on
certain arguments, which we also type

 This is the command line

 Basically, the process is this
1. The shell prints a prompt on our terminal or terminal emulator screen

(“screen”)

2. We type a command and “enter” (“return”)

3. The shell reads what we typed, interpreting special characters like space,
GLOB characters, quotation marks, etc

4. The shell carries out the operation in the way we asked (we might see
output from that operation on our screen)

5. repeat at step 1.

8

http://teaching.idallen.com/cst8207/12f/notes/120_shell_basics.html
http://teaching.idallen.com/cst8207/12f/notes/120_shell_basics.html

 When you invoke bash, or su, or sudo –s you
begin talking to a sub-shell

 schematically for illustration:

9

$

$
exit

bash

su

$

$ exit

three different bash

processes

 closer to what we actually see :

CST8177 – Todd Kelley 10

$ bash

bash

$ su

password:

exit

exit

$ exit

exit

$

 all the details:
http://teaching.idallen.com/cst8207/14w/notes/070_course_linux_server.html

 SSH (secure shell) is a program that allows us to securely invoke a
shell on a remote computer

 On Windows: putty.exe

 schematically (abbreviated):

11

ssh user@cst8177.idallen.ca $

cst8177.idallen.ca (remote computer)

CLS$ exit

$

password:

a terminal window on your

local computer

 what we’d see locally (abbreviated)

CST8177 – Todd Kelley 12

$ ssh user@cst8177.idallen.ca

password:

CLS $ exit

$

local terminal window

 http://teaching.idallen.com/cst8207/14w/notes/070_course_linux_server.html

 cst8177-alg.idallen.ca represents an internal IP address that

works only on campus: when on campus, use this one

 cst8177.idallen.ca must be used when off campus

 login id is your algonquin userid

 password is given verbally by your Prof(s) or another student

 Change your password at your first opportunity (if you
haven’t already)

 If you have firewalled internet access, you might try
connecting to the CLS on Port 443 with
◦ ssh –p 443 cst8177.idallen.ca

CST8177 – Todd Kelley 13

http://teaching.idallen.com/cst8207/14w/notes/070_course_linux_server.html
http://teaching.idallen.com/cst8207/14w/notes/070_course_linux_server.html

 Text Editors
◦ Windows

 notepad, wordpad (gui required)

◦ Unix

 vi (vim), emacs, nano, pico

 gedit (gui required – no good for CLS)

 You need to be able to edit text files without a GUI

◦ start the editor

◦ move around

◦ make a change

◦ save and quit

 vi: http://teaching.idallen.com/cst8207/13f/notes/300_vi_text_editor.html

 long into the CLS and issue the command, vimtutor

CST8177 – Todd Kelley 14

http://teaching.idallen.com/cst8207/12f/notes/300_vi_text_editor.html
http://teaching.idallen.com/cst8207/12f/notes/300_vi_text_editor.html

 http://teaching.idallen.com/cst8207/13f/notes/140_man_page_RTFM.html

 It’s normal for Unix users of all kinds (novice to expert) to
consult the manual (man pages) often.

 $ man man

◦ Read the man page for the man command

 $ man –k listing

◦ Print out man page titles that include the text listing

◦ Try using this command with the text list instead of listing

 What did you notice?

 less detail in your search terms means more search results

 More detail in your search terms gives less search results

CST8177 – Todd Kelley 15

 It’s a required skill to be able to find information in technical
documentation, (“grep-ing through documents”)

 We want you to get lots of practice looking things up
◦ You get better and faster at looking things up the more you do it

 Knowing where to look and what to look for

◦ You get the answer you were looking for and acquire the knowledge

 Here’s the normal process when you encounter a concept that
you don’t know or it’s become vague or you’ve forgotten
◦ search for the term in the manual

 Often you’ll get too much information, including information that is much more advanced than
you need – that’s normal, use the search facility

◦ search for the term in the course notes

 All of the CST8207 course notes are available in text form on the CLS

◦ search for the term on the web (be careful)

◦ ask your professor or lab instructor

 This includes situations where you have trouble with any of the above!

CST8177 – Todd Kelley 16

Commands, programs, scripts, etc.
Command

A directive to the shell typed at the prompt. It could be a
utility, a program, a built-in, or a shell script.

Program

A file containing a sequence of executable instructions.
Note that it's not always a binary file but can be text (that
is, a script).

Script

A file containing a sequence of text statements to be
processed by an interpreter like bash, Perl, etc.

Every program or script has a stdin, stdout, and stderr by
default, but they may not always be used.

Filter

A program that takes its input from stdin and send its
output to stdout. It is often used to transform a stream of
data through a series of pipes.

Scripts are often written as filters.

Utility

A program/script or set of programs/scripts that provides
a service to a user. (ls, grep, sort, uniq, many many more)

Built-in

A command that is built into the shell. That is, it is not a
program or script as defined above. It also does not
require a new process, unlike those above.

History

A list of previous shell commands that can be recalled,
edited if desired, and re-executed.

Token

The smallest unit of parsing; often a word delimited by
white space (blanks or spaces, tabs and newlines) or
other punctuation (quotes and other special characters).

stdin

The standard input file; the keyboard; the file at offset 0
in the file table.

stdout

The standard output file; the terminal screen; offset 1 in
the file table.

stderr

The standard error file; usually the terminal screen; offset

2 in the file table.

Standard I/O (Numbered 0, 1, and 2, in order)

stdin, stdout, and stderr

Pipe

Connects the stdout of one program to the stdin of the

next; the "|" (pipe, or vertical bar) symbol.

A command line that involves this is called a pipeline

Redirect

To use a shell service that replaces stdin, stdout, or stderr

with a regular named file.

Process
http://teaching.idallen.com/cst8207/13f/notes/770_processes_and_jobs.html

A process is what a script or program is called while it's being

executed. Some processes (called daemons) never end, as they

provide a service to many users, such as crontab services from crond.

Other processes are run by you, the user, from commands you enter

at the prompt. These usually run in the foreground, using the screen

and keyboard for their standard I/O. You can run them in the

background instead, if you wish.

Each process has a PID (or pid, the process identifier), and a parent

process with its own pid, known to the child as a ppid (parent pid).

You can look at the running processes with the ps command or

examine the family relationships with pstree.

Example: print out a full-format listing of all processes:

ps -ef

Child process

Every process is a child process, with the sole exception

of process number 1 – the init process.

A child process is forked or spawned from a parent by

means of a system call to the kernel services.

Forking produces an exact copy of the process, so it is

then replaced by an exec system call.

The forked copy also includes the environment variables

and the file table of the parent.

This becomes very useful when redirecting standard I/O,

since a child can redirect its own I/O without affecting its

parent.

Each non-builtin command is run as a child of your shell

(builtins are part of the shell process: man builtin).

History

The command history is a list of all the previous

commands you have executed in this session with this

copy of the shell. It's usually set to some large number

of entries, often 1000 or more.

Use echo $HISTSIZE to see your maximum entries

You can reach back into this history and pull out a

command to edit (if you wish) and re-execute.

To make the history of all your simultaneous sessions

is captured, do

shopt -s histappend

In your .bashrc

Some history examples
 To list the history:

 System prompt> history | less

 To repeat the last command entered:

 System prompt> !!

 To repeat the last ls command:

 System prompt> !ls

 To repeat the command from prompt number 3:

 System prompt> !3

 To scroll up and down the list:

 Use arrow keys

 To edit the command:

 Scroll to the command and edit in place

Redirection
Three file descriptors are open and available

immediately upon shell startup: stdin, stdout, stderr

These can be overridden by various redirection

operators

Following is a list of most of these operators (there are

a few others that we will not often use; see man bash

for details)

If no number is present with > or <, 0 (stdin) is

assumed for < and 1 (stdout) for >; to work with 2

(stderr) it must be specified, like 2>

Operator Behaviour

Individual streams

< filename Redirects stdin from filename

> filename Redirects stdout to filename

>> filename Appends stdout onto filename

2> filename Redirects stderr to filename

2>> filename Appends stderr onto filename

Combined streams

&> filename Redirects both stdout and stderr to
filename

>& filename Same as &>, but do not use

&>> filename Appends both stdout and stderr onto
filename

>>& filename Not valid; produces an error

Operator Behaviour

Merged streams

2>&1 Redirects stderr to the same place as
stdout, which, if redirected, must
already be redirected

1>&2 Redirects stdout to the same place as
stderr, which, if redirected, must
already be redirected

Special stdin processing ("here" files),
mainly for use within scripts

<< string Read stdin using string as the end-of-
file indicator

<<- string Same as <<, but remove leading TAB
characters

<<< string Read string into stdin

Command aliases

To create an alias (no spaces after alias name)

 alias ll="ls -l"

To list all aliases

 alias or alias | less

To delete an alias

 unalias ll

Command aliases are normally placed in your

~/.bashrc file (first, make a back-up copy; then use vi to

edit the file)

If you need something more complex than a simple

alias (they have no arguments or options), then write a

bash function script (that topic is coming soon).

Filename Globbing and other Metacharacters

Metacharacter Behaviour

\ Escape; use next char literally

& Run process in the background

; Separate multiple commands

$xxx Substitute variable xxx

? Match any single character

* Match zero or more characters

[abc] Match any one char from list

[!abc] Match any one char not in list

(cmd) Run command in a subshell

{cmd} Run in the current shell

Simple Quoting
No quoting:

System Prompt$ echo $SHELL

/bin/bash

Double quote: "

System Prompt$ echo "$SHELL"

/bin/bash

Single quote: '

System Prompt$ echo '$SHELL'

$SHELL

Observations:

Double quotes allow variable substitution;

Single quotes do not allow for substitution.

 Backslash \ removes the special meaning of
the special character that follows it

 Single quotes remove the special meaning
from all special characters
◦ Cannot include single quote inside single quotes

not even with backslash

 Double quotes remove the special meaning
from special characters, except ! $ \ `
◦ This means history, variable expansion, command

substitution and backslash escaping all work inside
double quotes

CST8177 – Todd Kelley 31

Escape and Quoting

Escape alone:

Prompt$ echo \$SHELL

$SHELL

Escape inside double quotes:

Prompt$ echo "\$SHELL"

$SHELL

Escape inside single quotes:

Prompt$ echo '\$SHELL'

\$SHELL

Observations:

Escape leaves the next char unchanged;

Double quotes obey escape (process it);

Single quotes don't process it (treat literally)

Filespecs and Quoting

System Prompt$ ls

a b c

System Prompt$ echo *

a b c

System Prompt$ echo "*"

*

System Prompt$ echo '*'

*

System Prompt$ echo *

*

Observation:

Everything prevents file globs

Backquotes and Quoting

System Prompt$ echo $(ls) # alternate

a b c

System Prompt$ echo `ls` # forms

a b c

System Prompt$ echo "`ls`"

a

b

c

System Prompt$ echo '`ls`'

`ls`

Observations:

Single quotes prevent command processing

Summary so far
Double quotes allow variable substitution

"$SHELL" becomes /bin/bash

Single quotes do not allow for substitution

'$SHELL' becomes $SHELL

Escape leaves the next char unchanged

\$SHELL becomes $SHELL

Double quotes obey escape (process it);

"\$SHELL" becomes $SHELL

Single quotes don't process it (treat it literally)

'\$SHELL' becomes \$SHELL

Everything prevents file globs

"*" '*' * each become *

Single quotes prevent command processing

'`ls`' becomes `ls`

Escaping quotes

System Prompt$ echo ab"cd

> "

abcd

System Prompt$ echo ab\"cd

ab"cd

System Prompt$ echo 'ab\"cd'

ab\"cd

System Prompt$ echo "ab"cd"

> "

abcd

More quote escapes

System Prompt$ echo "ab\"cd"

ab"cd

System Prompt$ echo don't

> '

dont

System Prompt$ echo don\'t

don't

System Prompt$ echo "don't"

don't

System Prompt$ echo 'don't'

> '

dont

Observations
Unbalanced quotes cause a continuation prompt

Unescaped quotes are removed (but their meaning is

applied)

"hello" becomes hello

"$HOME" becomes /home/username

Quoting protects quotes, as does \ escaping

"don't" and don\'t are the same, and OK

Single quotes are more restrictive than double

System Prompt$ echo '$USER' "$USER"

$USER someusername

(In class) Warm-up for next lecture:

Add a Unix command
• create a simple shell script

• make it executable

• copy it to a directory that is in our $PATH

• presto, we have extended UNIX

