
bash startup files
 Linux/Unix files

 stty

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 midterms (Feb 27 and April 10)

 bash startup files

 More Linux Files review

 stty

2

 We customize our shell behavior by
◦ setting environment variables, for example,

 export PATH=/bin:/usr/bin:/sbin

◦ setting aliases, for example

 alias ll="ls –l"

◦ setting shell options, for example,

 shopt –s failglob or shopt –s dotglob

◦ setting shell options, for example,

 set –o noclobber

we make these customizations permanent using bash startup
files

CST8177 – Todd Kelley 3

 http://teaching.idallen.com/cst8207/13f/notes/210_startup_files.html

 ~/.bash_profile is sourced by your login shell when you
log in
◦ the things we set up here are done only once when we log in

◦ export-ed variables here are inherited by subshells

◦ we source ~/.bashrc here because login shells do not source it

 ~/.bashrc is sourced by each non-login subshell, interactive
or not
◦ here we set up things that are not inherited from the login shell

◦ inside this file, at the top, we check whether it’s an interactive or non-
interactive shell:
[-z "${PS1-}"] && return

◦ we set aliases in this file

◦ we set options configured with shopt and set in this file

CST8177 – Todd Kelley 4

http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html
http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html
http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html

 When a login shell starts
1. execute commands from /etc/profile, if that

file exists

2. execute commands from the first of these that is
readable (in order):

1. ~/.bash_profile

2. ~/.bash_login

3. ~/.profile

 When a login shell exits

1. read and execute commands from the file
~/.bash_logout, if it exists

CST8177 – Todd Kelley 5

 When an interactive non-login shell starts
1. execute commands from ~/.bashrc, if that file

exists

 The -–rcfile file option specifies that
file should be used instead of ~/.bashrc

CST8177 – Todd Kelley 6

 The system administrator can configure the
default shell environment for all users

 Configuration in /etc/profile applies to all
users on the system

 The files in /etc/skel/ are copied to newly
created user accounts (can give new users a
default copy of .bash_profile and .bashrc)

CST8177 – Todd Kelley 7

 The bash process used to execute a shell
script is non-interactive

 stdin and stdout not connected to a
terminal (more details in bash manpage)

CST8177 – Todd Kelley 8

 .bash_profile is loaded once by a login shell

 .bashrc is loaded by non-login shells

 There are cases where there never is a login shell,
for example
 ssh remote-server.com <some_command>

 So the method we'll use in this course:
◦ .bash_profile does nothing except load .bashrc

◦ .bashrc keeps track of things that should be done only
once

CST8177 – Todd Kelley 9

[-z "${PS1-}"] && return

if ["${_FIRST_SHELL-}" = ""] ; then

 export _FIRST_SHELL=$$

 export PATH="$PATH:$HOME/bin"

 export LC_ALL=en_CA.UTF-8

 export LANG=en_CA.UTF-8

 # here we put things that

 # should be done once

fi

here we put things that need to be

done for every interactive shell

CST8177 – Todd Kelley 10

Contains just one line:

source ./.bashrc

CST8177 – Todd Kelley 11

 Sobel, Chapter 6

 160_pathnames.html Unix/Linux Pathnames (absolute, relative, dot, dot dot)

 450_file_system.html Unix/Linux File System - (correct explanation)

 460_links_and_inodes.html Hard links and Unix file system nodes (inodes)

 460_symbolic_links.html Symbolic Links - Soft Links - Symlinks

 500_permissions.html Unix Modes and Permissions

 510_umask.html Umask and Permissions

CST8177 – Todd Kelley 12

http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/450_file_system.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_links_and_inodes.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/460_symbolic_links.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/500_permissions.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html
http://teaching.idallen.com/cst8207/12f/notes/510_umask.html

Information given by long listing: ls -l

10 characters

 file type as the first letter

 access modes (remaining letters)

Link count

 number of links to this file or directory

User-owner Login Name

 user who owns the file/directory

 based on owner UID

User-owner Group Name

 group who owns the file/directory

 based on owner GID

File Size

 size (in bytes or K) of the file/directory

Date/Time Modified

date and time when last created / modified / saved

File Name

 actual file/directory name

 Linux recognizes and identifies several file types,

which is coded into the first letter of the first field of

information about the file:

 - (dash)a regular file

 b block device special file

 c character device special file

 d a directory

 l a symbolic (soft) link

 p a named pipe or FIFO

 s socket special filename

 In Linux, 3 types of access permissions or privileges

can be associated with a file:

– read (r) grants rights to read a file

– write (w) grants rights to write to, or change, a file

– execute (x) grants rights to execute the file (to run

the file as a command)

 All 3 permissions can then be applied to each of 3

types of users:

– User: owner of the file

– Group: group to which user must belong to gain

associated rights

– Others: not User and not member of Group

(sometimes called “World” or “Everybody”)

r w x Meaning

0 0 0 0 No permission

0 0 1 1 Execute-only permission

0 1 0 2 Write-only permission

0 1 1 3 Write and execute permissions

1 0 0 4 Read-only permission

1 0 1 5 Read and execute permissions

1 1 0 6 Read and write permissions

1 1 1 7 Read, write and execute permissions

Octal

Value

Octal representation of permissions

 The same three types of access permissions or

privileges are associated with a directory, but with

some differences:

– read (r) rights to read the directory

– write (w) rights to create or remove in the directory

– execute/search (x) rights to access the directory

meaning, cd into the directory, or access inodes it contains, or

“pass through”

All three permissions can then be applied to each of

three types of users as before.

– User owner/creator of the file

– Group group to which user must belong

– Others everyone else (Rest-of-world)

 Three special access bits. These can be combined as

needed.

 SUID - Set User ID bit

 When this bit is set on a file, the effective User ID of a process

resulting from executing the file is that of the owner of the file,

rather than the user that executed the file

 For example, check the long listing of /usr/bin/passwd – the

SUID bit makes this program run as root even when invoked by

a regular user – allowing regular users to change their own

password

chmod 4xxx file-list

chmod u+s file-list

 SGID - Set Group ID bit

 Similar to SUID, except an executable file with this bit set will

run with effective Group ID of the owner of the file instead of the

user who executed the file.

chmod 2xxx file-list

chmod g+s file-list

 sticky bit (restricted deletion flag)

 The sticky bit on a directory prevents unprivileged users from

removing or renaming a file in the directory unless they are the

owner of the file or the directory

 for example, /tmp is a world-writeable directory where all users

need to create files, but only the owner of a file should be able to

delete it.

 without the sticky bit, hostile users could remove all files in /tmp;

whereas with the sticky bit, they can remove only their own files.

chmod 1xxx dir-list

chmod +t dir-list

 The permissions a user will have is determined in this way:

 If the user is the owner of the file or directory, then the

user rights are used.

 If the user is not the owner but is a member of the group

owning the file or directory, then the group rights are

used.

 If the user is neither the owner nor a part of the group

owning the file, then the other rights are used.

 NOTE: It is possible to give the “world” more permissions

that the owner of the file. For example, the unusual
permissions -r--rw-rw- would prevent only the owner

from changing the file – all others could change it!

 The permissions assigned to newly created files or

directories are determined by the umask value of your

shell.

 Commands:

 umask - display current umask

 umask xyz - sets new umask to an octal value xyz

 permissions on a newly created file or directory are

calculated as follows:

 start with a “default” of 777 for a directory or 666 for a file

 for any 1 in the binary representation of the umask, change the

corresponding bit to 0 in the binary representation of the default

 umask is a reverse mask: the binary representation

tells you what bits in the 777 or 666 default will be 0 in

the permissions of the newly created file or directory

 if umask is 022
◦ binary umask representation: 000010010 = 022

◦ default file permissions 666: 110110110

◦ permissions on new file: 110100100 = 644

 if umask is 002
◦ binary umask representation: 000000010 = 002

◦ default file permissions 666: 110110110

◦ permissions on new file: 110110100 = 664

 if umask is 003
◦ binary umask representation: 000000011 = 003

◦ default file permissions 666: 110110110

◦ permissions on new file: 110110100 = 664

CST8177 – Todd Kelley 23

 notice that for files, a umask of 003 ends up
doing the same thing as a umask of 002

 Why?

CST8177 – Todd Kelley 24

 if umask is 022
◦ binary umask representation: 000010010 = 022

◦ default dir permissions 777: 111111111

◦ permissions on new dir : 111101101 = 755

 if umask is 002
◦ binary umask representation: 000000010 = 002

◦ default dir permissions 777: 111111111

◦ permissions on new dir : 111111101 = 775

 if umask is 003
◦ binary umask representation: 000000011 = 003

◦ default dir permissions 777: 111111111

◦ permissions on new dir : 111111100 = 774

CST8177 – Todd Kelley 25

 notice that for directories, a umask of 003
gives different results than a umask of 002

 Why?

CST8177 – Todd Kelley 26

 It is important for the Linux file system manager to govern

permissions and other file attributes for each file and

directory, including

– ownership of files and directories

– access rights on files and directories

– The 3 timestamps seen in stat (man stat)

 The information is maintained within the file system

information (inodes) on the hard disk

 This information affects every file system action.

 chown owner[:group] files

 Change ownership of files and directories (available for

root only)

Examples:

chown guest:guest file1 dir2

 change ownership of file1 and dir2 to user guest and

group guest

chown guest dir2

 change ownership of dir2 to user guest but leave the

group the same

chown :guest file1

 change ownership of file1 to group guest but leave the

user the same (can also use chgrp)

 chmod permissions files

 Explicitly change file access permissions

Examples:

chmod +x file1

 changes file1 to have executable rights for

user/group/other, subject to umask

chmod u+r,g-w,o-rw file2

 changes file2 to add read rights for user, remove write

rights for group and remove both read and write rights for

others

chmod 550 dir2

 changes dir2 to have only read and execute rights for

user and group but no rights for other

 recall the effect of these control characters:
◦ ^Z suspend the current foreground process

◦ ^C terminate the current foreground process

◦ ^D end of file character

◦ ^U kill character to erase the command line

 these are actually properties of the terminal

 they can be set with the stty command

 stty –a : print out the current tty settings

 stty susp ^X :(that’s a caret ^, shift-6 on my
keyboard, followed by capital X) means set the
susp character to CTRL-X instead of CTRL-Z

CST8177 – Todd Kelley 30

 if you accidentally dump the contents of a
binary file to your screen, and all the control
characters reconfigure your terminal on you,
you can reset it to sane values with

 stty sane

CST8177 – Todd Kelley 31

