
Regular Expressions

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 Our standard .bashrc and .bash_profile
(or .profile)

 Our standard script header

 Regular Expressions

2

[-z "${PS1-}"] && return

if ["${_FIRST_SHELL-}" = ""] ; then

 export _FIRST_SHELL=$$

 export PATH="$PATH:$HOME/bin"

 export LC_ALL=en_CA.UTF-8

 export LANG=en_CA.UTF-8

 # here we put things that

 # should be done once

fi

here we put things that need to be

done for every interactive shell

CST8177 – Todd Kelley 3

Contains just one line:

source ./.bashrc

CST8177 – Todd Kelley 4

#!/bin/sh -u

PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

umask 022 # use 077 for secure scripts

CST8177 – Todd Kelley 5

 There are two different pattern matching
facilities that we use in Unix/Linux:

1. filename globbing patterns match existing
pathnames in the current filesystem only

2. regular expressions match substrings in
arbitrary input text

 We need to pay close attention to which of
the two situations we're in, because some of
the same special characters have different
meanings!

CST8177 – Todd Kelley 6

 Globbing is used for
◦ globbing patterns in command lines

◦ patterns used with the find command

 shell command line (the shell will match the
patterns against the file system):
◦ ls *.txt

◦ echo ?????.txt

◦ vi [ab]*.txt

 find command (we double quote the pattern so
the find command sees the pattern, not the shell):
◦ find ~ -name "*.txt"

◦ in this case, the find command matches the pattern against
the file system

CST8177 – Todd Kelley 7

 IMPORTANT: regular expressions use some of
the same special characters as filename
matching on the previous slide but they mean
different things!

 Before we look at regular expressions, let's
take a look at some expressions you're
already comfortable with: algebraic
expressions

 Larger algebraic expressions are formed by
putting smaller expressions together

CST8177 – Todd Kelley 8

Expression Meaning Comment

a a a simple expression

b b another simple expression

ab a x b ab is a larger expression formed from
two smaller ones
concatenating two expressions
together means to multiply them

b2 b x b we might have represented this with
b^2, using ^ as an exponentiation
operator

ab2 a x (b x b) why not (a x b) x (a x b)?

(ab)2 (a x b) x (a x b)

CST8177 – Todd Kelley 9

Expression Meaning Comment

a match single 'a' a simple expression

b match single 'b' another simple expression

ab match strings
consisting of single
'a' followed by
single 'b'

"ab" is a larger expression formed
from two smaller ones
concatenating two regular
expressions together means
"followed immediately by" and we'll
say "followed by"

b* match zero or
more 'b' characters

a big difference in meaning from the
'*' in globbing! This is the regular
expression repetition operator.

ab* 'a' followed by zero
or more 'b'
characters

why not repeating ('a' followed by 'b'),
zero or more times? Hint: think of
"ab2" in algebra.

\(ab\)* ('a' followed by 'b'),
zero or more times

We can use parenthesis, but in Basic
Regular Expressions, we use \(and \)

CST8177 – Todd Kelley 10

Expression Matches Ex. Example
Matches

Comment

non-special
character

itself x "x" like globbing

one
expression
followed by
another

first followed
by second

xy "xy" like globbing

. any single
character

. "x" or "y"
or "!" or "."
or "*"
…etc

like the '?' in globbing

expression
followed by
*

zero or more
matches of the
expression

x* "" or "x" or
"xx" or
"xxx"
…etc

NOT like the * in
globbing, although .*
behaves like * in
globbing

character
classes

a SINGLE
character from
the list

[abc] "a" or "b"
or "c"

like globbing

CST8177 – Todd Kelley 11

Expression Matches Ex. Example
Matches

Comment

^ beginning of a
line of text

^x "x" if it’s
the first
character
on the line

anchors the match to
the beginning of a
line

$ end of a line of
text

x$ "x" if it's
the last
character
on the line

anchors the match to
the end of a line

^ (but not
first)

^ a^b "a^b" ^ has no special
meaning unless its
first

$ (but not
last)

$ a$b "a$b" $ has no special
meaning unless its
last

CST8177 – Todd Kelley 12

Expression Matches Ex. Example
Matches

Comment

special
character
inside [and
]

as if the
character is
not special

[\] "\" conditions: ']' must
be first, '^' must not
be first, and '-' must
be last

\ followed
by a special
character

that character
with its special
meaning
removed

\. "." like globbing

\ followed
by non-
special
character

the non-
special
character

\a "a" \ before a non-
special character is
ignored

CST8177 – Todd Kelley 13

 testing regular expressons with grep on stdin
◦ run grep --color=auto 'expr'

◦ use single quotes to protect your expr from the
shell

◦ grep will wait for you to repeatedly enter your test
strings (type ^D to finish)

◦ grep will print any string that matches your expr,
so each matched string will appear twice (once
when you type it, and once when grep prints it)

◦ the part of the string that matched will be colored

◦ unmatched strings will appear only once where you
typed them

CST8177 – Todd Kelley 14

 Regular expressions can be used in awk,
grep, vi, sed, more, less, and others

 For now, we'll use grep on the command line

 We will get into the habit of putting our regex
in single quotes on the command line to
protect the regex from the shell

 Special characters for basic regular
expressions: \, [,], ., *, ^, $

 can match single quote by using double
quotes, as in : grep "I said, \"don't\""

 alternatively: grep 'I said, "don'\''t"'

 CST8177 – Todd Kelley 15

 Appendix A in the Sobell Text book is a
source of information

 You can read under REGULAR EXPRESSIONS
in the man page for the grep command - this
tells you what you need to know

 The grep man page is normally available on
Unix systems, so you can use it to refresh
your memory, even years from now

CST8177 – Todd Kelley 16

 examples (try these)
◦ grep ‘ab’ #any string with a followed by b

◦ grep ‘aa*b’ #one or more a followed by b

◦ grep ‘a..*b’ #a, then one or more anything, then b

◦ grep ‘a.*b’ #a then zero or more anything, then b

◦ grep ‘a.b’ # a then exactly one anything, then b

◦ grep ‘^a’ # a must be the first character

◦ grep ‘^a.*b$’ # a must be first, b must be last

 Try other examples: have fun!

CST8177 – Todd Kelley 17

