
Regular Expressions

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 Our standard .bashrc and .bash_profile
(or .profile)

 Our standard script header

 Regular Expressions

2

[-z "${PS1-}"] && return

if ["${_FIRST_SHELL-}" = ""] ; then

 export _FIRST_SHELL=$$

 export PATH="$PATH:$HOME/bin"

 export LC_ALL=en_CA.UTF-8

 export LANG=en_CA.UTF-8

 # here we put things that

 # should be done once

fi

here we put things that need to be

done for every interactive shell

CST8177 – Todd Kelley 3

Contains just one line:

source ./.bashrc

CST8177 – Todd Kelley 4

#!/bin/sh -u

PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

umask 022 # use 077 for secure scripts

CST8177 – Todd Kelley 5

 There are two different pattern matching
facilities that we use in Unix/Linux:

1. filename globbing patterns match existing
pathnames in the current filesystem only

2. regular expressions match substrings in
arbitrary input text

 We need to pay close attention to which of
the two situations we're in, because some of
the same special characters have different
meanings!

CST8177 – Todd Kelley 6

 Globbing is used for
◦ globbing patterns in command lines

◦ patterns used with the find command

 shell command line (the shell will match the
patterns against the file system):
◦ ls *.txt

◦ echo ?????.txt

◦ vi [ab]*.txt

 find command (we double quote the pattern so
the find command sees the pattern, not the shell):
◦ find ~ -name "*.txt"

◦ in this case, the find command matches the pattern against
the file system

CST8177 – Todd Kelley 7

 IMPORTANT: regular expressions use some of
the same special characters as filename
matching on the previous slide but they mean
different things!

 Before we look at regular expressions, let's
take a look at some expressions you're
already comfortable with: algebraic
expressions

 Larger algebraic expressions are formed by
putting smaller expressions together

CST8177 – Todd Kelley 8

Expression Meaning Comment

a a a simple expression

b b another simple expression

ab a x b ab is a larger expression formed from
two smaller ones
concatenating two expressions
together means to multiply them

b2 b x b we might have represented this with
b^2, using ^ as an exponentiation
operator

ab2 a x (b x b) why not (a x b) x (a x b)?

(ab)2 (a x b) x (a x b)

CST8177 – Todd Kelley 9

Expression Meaning Comment

a match single 'a' a simple expression

b match single 'b' another simple expression

ab match strings
consisting of single
'a' followed by
single 'b'

"ab" is a larger expression formed
from two smaller ones
concatenating two regular
expressions together means
"followed immediately by" and we'll
say "followed by"

b* match zero or
more 'b' characters

a big difference in meaning from the
'*' in globbing! This is the regular
expression repetition operator.

ab* 'a' followed by zero
or more 'b'
characters

why not repeating ('a' followed by 'b'),
zero or more times? Hint: think of
"ab2" in algebra.

\(ab\)* ('a' followed by 'b'),
zero or more times

We can use parenthesis, but in Basic
Regular Expressions, we use \(and \)

CST8177 – Todd Kelley 10

Expression Matches Ex. Example
Matches

Comment

non-special
character

itself x "x" like globbing

one
expression
followed by
another

first followed
by second

xy "xy" like globbing

. any single
character

. "x" or "y"
or "!" or "."
or "*"
…etc

like the '?' in globbing

expression
followed by
*

zero or more
matches of the
expression

x* "" or "x" or
"xx" or
"xxx"
…etc

NOT like the * in
globbing, although .*
behaves like * in
globbing

character
classes

a SINGLE
character from
the list

[abc] "a" or "b"
or "c"

like globbing

CST8177 – Todd Kelley 11

Expression Matches Ex. Example
Matches

Comment

^ beginning of a
line of text

^x "x" if it’s
the first
character
on the line

anchors the match to
the beginning of a
line

$ end of a line of
text

x$ "x" if it's
the last
character
on the line

anchors the match to
the end of a line

^ (but not
first)

^ a^b "a^b" ^ has no special
meaning unless its
first

$ (but not
last)

$ a$b "a$b" $ has no special
meaning unless its
last

CST8177 – Todd Kelley 12

Expression Matches Ex. Example
Matches

Comment

special
character
inside [and
]

as if the
character is
not special

[\] "\" conditions: ']' must
be first, '^' must not
be first, and '-' must
be last

\ followed
by a special
character

that character
with its special
meaning
removed

\. "." like globbing

\ followed
by non-
special
character

the non-
special
character

\a "a" \ before a non-
special character is
ignored

CST8177 – Todd Kelley 13

 testing regular expressons with grep on stdin
◦ run grep --color=auto 'expr'

◦ use single quotes to protect your expr from the
shell

◦ grep will wait for you to repeatedly enter your test
strings (type ^D to finish)

◦ grep will print any string that matches your expr,
so each matched string will appear twice (once
when you type it, and once when grep prints it)

◦ the part of the string that matched will be colored

◦ unmatched strings will appear only once where you
typed them

CST8177 – Todd Kelley 14

 Regular expressions can be used in awk,
grep, vi, sed, more, less, and others

 For now, we'll use grep on the command line

 We will get into the habit of putting our regex
in single quotes on the command line to
protect the regex from the shell

 Special characters for basic regular
expressions: \, [,], ., *, ^, $

 can match single quote by using double
quotes, as in : grep "I said, \"don't\""

 alternatively: grep 'I said, "don'\''t"'

 CST8177 – Todd Kelley 15

 Appendix A in the Sobell Text book is a
source of information

 You can read under REGULAR EXPRESSIONS
in the man page for the grep command - this
tells you what you need to know

 The grep man page is normally available on
Unix systems, so you can use it to refresh
your memory, even years from now

CST8177 – Todd Kelley 16

 examples (try these)
◦ grep ‘ab’ #any string with a followed by b

◦ grep ‘aa*b’ #one or more a followed by b

◦ grep ‘a..*b’ #a, then one or more anything, then b

◦ grep ‘a.*b’ #a then zero or more anything, then b

◦ grep ‘a.b’ # a then exactly one anything, then b

◦ grep ‘^a’ # a must be the first character

◦ grep ‘^a.*b$’ # a must be first, b must be last

 Try other examples: have fun!

CST8177 – Todd Kelley 17

