CST8177 - Linux Il

Regular Expressions

Todd Kelley
kelleyt@algonquincollege.com

CST8207 - Todd Kelley

Topics

» POSIX character classes

» Some Regular Expression gotchas

» Regular Expression Resources

» Assignment 3 on Regular Expressions

» Basic Regular Expression Examples

» Extended Regular Expressions

» Extended Regular Expression Examples

Character classes

» Character classes are lists of characters inside
square brackets

» T

g
» C

ne work the same in regex as they do in
obbing

naracter class expressions always match

EXACTLY ONE character (unless they are
repeated by appending ')

» [azh] matches "a" or "h" or "z

CST8177 - Todd Kelley

Character Classes (cont'd)

» Non-special characters inside the square
brackets form a set (order doesn't matter,
and repeats don’t affect the meaning):
> [azh] and [zha] and [aazh] are all equivalent

» Special characters lose their meaning when
inside square brackets, but watch out for »,
1, and — which do have special meaning
inside square brackets, depending on where
they occur

CST8177 - Todd Kelley

Character classes (cont'd)

» ~ inside square brackets makes the character
class expression mean "any single character
UNLESS it's one of these"

» [~azh] means "any single character that is
NOT a, z, orh"

» ~ has its special "inside square brackets”

meaning only if it is the first character inside
the square brackets

» [a”zh] means a, h, z, or ©
» Remember, leading ~ outside of square

orackets has special meaning "match
peginning of line"

RN\

CST8177 - Todd Kelley

Character classes (cont'd)

» 1 can be placed inside square brackets but it
has to be first (or second if ~ is first)

» []azh] means], a, h, Or z
» [~lazh] means "any single character that is
NOT 1, a, h, or z"

» Attempting to put Jinside square brackets in
any other position is a syntax error:
- [ab]ld] is a failed attempt at [ab] [d]
> [1 is a failed attempt at []]

CST8177 - Todd Kelley

Character class ranges (avoid)

» — inside square brackets represents a range
of characters, unless it is first or last

» [az-] means a, z, Or -
» [a—z] means any one character between a
and z inclusive (but what does that mean?)

» "Between a and z inclusive” used to mean
something, because there was only one locale

» Now that there is more than one locale, the
meaning of "between a and z inclusive" is
ambiguous because it means different things
in different locales

CST8177 - Todd Kelley

Internationalization (i18n)

» i18n basically means "support for more than one locale"
» Not all computer users use the same alphabet

» When we write a shell script, we want it to handle text and filenames
properly for the user, no matter what language they use

» In the beginning, there was ASCII, a 7 bit code of 128 characters

» Now there’s Unicode, a table that is meant to assign an integer to
every character in the world

» UTF-8 is an implementation of that table, encoding the 7-bit ASCII
characters in a single byte with high order bit of 0

» The 128 single-byte UTF-8 characters are the same as true ASCII
bytes (both have a high order bit of 0)

» UTF-8 characters that are not ASCIlI occupy more than one byte, and
these give us our accented characters, non-Latin characters, etc

» Locale settings determine how characters are interpreted and
treated, whether as ASCIl or UTF-8, their ordering, and so on

CST8177 - Todd Kelley

What is locale

A locale is the definition of the subset of a user's environment that
depends on language and cultural conventions.

» For example, in a French locale, some accented characters qualify as
'lower case alphabetic”, but in the old "C" locale, ASCIl a-z contains
no accented characters.

» Locale is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behavior
of components of the system.

» Category names correspond to the following environment variable
names (the first three especially can affect the behavior of our shell
scripts):

o LC_ALL:Overrides any individual setting of the below categories.
o LC_CTYPE. Character classification and case conversion.

o LC_COLLATE: Collation order.

o LC_MONETARY: Monetary formatting.

o LC_NUMERIC: Numeric, non-monetary formatting.

> LC_TIME: Date and time formats.

o LC_MESSAGES: Formats of informative and diagnostic messages and interactive
responses.

v

CST8177 - Todd Kelley

Ranges depend on locale

$ export LC ALL=C
S echo *

A BCUZ abuccz

S echo [a-z]*

a b c z

S export LC ALL=en CA.UTF-8
$ echo * B B

A aBDbCc 272z

S echo [a-z]*

a Bb Cc 72 z

$

CST8177 - Todd Kelley

10

POSIX character classes

» Do not use ranges in bracket expressions

» We now use special symbols to represent the
sets of characters that we used to represent
with ranges.

» These all start with [: and end with :]
» For example lower case alphabetic characters

are represented by the symbol [:1lower:]

> [[:1lower:]] matches any lower case alpha char

o [AZ[:lower:]112] matches &, 7z, 1, 2, orany
lower case alpha char

CST8177 - Todd Kelley 11

POSIX character classes

» [:alnum:] alphanumeric characters
» [:alpha:] alphabetic characters

» [:cntrl;] control characters

» [:digit:] digit characters

» [:lower:] lower case alphabetic characters

» [:print:] visible characters, plus [:space:]

» [:punct:] Punctuation characters and other symbols

o "#$%&'()*+,\-./;;<=>?2@[] _ " {|}~

» [:space:]
» [upper:.
v [:xdigit:]
» [:graph:]

White space (space, tab)

upper case alphabetic characters
Hexadecimal digits

Visible characters (anything except spaces

and control characters)

CST8177 - Todd Kelley 12

POSIX character classes (cont'd)

» POSIX character classes go inside [...]
» examples

> [[:alnum:]] matches any alphanumeric character
> [[:alnum:]}] matches one alphanumeric or }

° [[:alpha:][:cntrl:]] matches one alphabetic or
control character

» Take NOTE!

> [:alnum:] matches one of a,:,1,n,u,m (but grep on
the CLS will give an error by default)

> [abc[:digit:]] matches one of a,b,c, or a digit

CST8177 - Todd Kelley

13

POSIX character classes (cont'd)

» The exact content of each character class
depends on the local language.

» Only for plain ASCII is it true that "letters”
means English a-z and A-Z.

» Other languages have other "letters”, e.g. €, c,
etc.

» When we use the POSIX character classes, we
are specifying the correct set of characters for
the local language as per the POSIX
description

CST8177 - Todd Kelley 14

Gotchas

» Remember any match will be a long as
possible

> aa* matches the aaa in xaaax just once, even

though you might think there are three smaller
matches in a row

» Unix/Linux regex processing is line based
> our input strings are processed line by line
- newlines are not considered part of our input string

- we have * and s to control matching relative to
newlines

15

Gotchas (cont'd)

» expressions that match zero length strings

- remember that the repetition operator * means
"zero or more"

> any expression consisting of zero or more of
anything can also match zero

- For example, x*, "meaning zero or more x
characters”, will match ANY line, up to n+1 times,
where n is the number of (hon-x) characters on that
line, because there are zero x characters before and
after every non-x character

- grep anhd regexpal.com cannot highlight matches
of zero characters, but the matches are there!

\\\\\\\

CST8177 - Todd Kelley

16

Gotchas (cont'd)

» quoting (don't let the shell change regex

before grep sees the regex)

$ mkdir empty

$ cd empty

$ grep [[:upper:]] /etc/passwd | wc
503 2009 39530

$ touch Z

$ grep [[:upper:]] /etc/passwd | wc
7 29 562

$ touch A

$ grep [[:upper:]] /etc/passwd | wc
87 343 7841
$ chmod 000 Z
$ grep [[:upper:]] /etc/passwd | wc
grep: Z: Permission denied
87 343 7841

CST8177 - Todd Kelley

Gotchas (cont'd)

» quoting (don't let the shell change regex

before grep sees the regex)

$ mkdir empty

$ cd empty

$ grep [[:upper:]] /etc/passwd | wc
503 2009 39530

$ touch Z

$ grep [[:upper:]] /etc/passwd | wc
7 29 562

$ touch A

$ grep [[:upper:]] /etc/passwd | wc
87 343 7841
$ chmod 000 Z
$ grep [[:upper:]] /etc/passwd | wc
grep: Z: Permission denied
87 343 7841

CST8177 - Todd Kelley

Gotchas (cont'd)

» To explain the previous slide, use echo to
print out the grep command you are actually
running:

$ echo grep [[:upper:]] /etc/passwd
grep A Z /etc/passwd

$rm?

$ echo grep [[:upper:]] /etc/passwd
grep [[:upper:]] /etc/passwd

CST8177 - Todd Kelley

19

Gotchas

» we will not use range expressions

» we'll standardize on en_CA.UTF-8 so that the
checking script for assignments always sees
things formatted the same way

» We don't set locale environment variables in
our scripts (why?)

CST8177 - Todd Kelley

20

Regex Resources

» http://www.regular-

expressions.info/tutorial.html

» http://lynda.com
» http://regexpal.com

p—

CST8177 - Todd Kelley

21

http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://lynda.com

Lynda.com

» Some students are already comfortable with
the command line

» For those who aren't, yet another tutorial
source that might help is Lynda.com

» All Algonquin students have free access to
Lynda.com

» Unix for Mac OSX users:

http://www.lynda.com/Mac-0S-X-10-6-tutorials/Unix-for-Mac-0S-X-
Users/78546-2.html

CST8177 - Todd Kelley 22

Lynda.com and regex

» Lynda.com has a course on regular expressions

» The problem is that it covers our material as well as some
more advanced topics that we won't cover

» Itis a good presentation, and the following chapters should
have minimal references to the "too advanced" material

> Chapter 2 Characters
> Chapter 3 Character Sets
> Chapter 4 Repetition Expressions

» On campus use this URL:

http://www.lynda.com/Regular-Expressions—-tutorials/Using-Regular-
Expressions/85870-2.html

» Off campus use this URL:

CST8177 - Todd Kelley

23

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html

Assignment 3 on regex

» Assignment 3 asks you to write shell scripts

» These are simple scripts: just the script header,
and a grep command where coming up with the
regex is your work to be done

» You don't need extended regular expression

functionality, and the checking script will disallow
it

» We will cover extended regular expression
functionality below

CST8177 - Todd Kelley 24

Basic Regular Expression Examples

» phone number
- 3 digits, dash, 4 digits

[[:digit:]][[:digit:]1][[:digit:]]-[[:digit:]][[:digit:]][[:digit:]][[:digit:]]
» postal code
- A9A 9A9

[[:upper:]1]1[[:digit]][[:upper:]1] [[:digit:]][[:upper:]1]1[[:digit:]]
» email address (simplified, lame)
o someohe@somewhere.com

- domain name cannot begin with digit
[[:alnum:]_-1[[:alnum:]_-1*@[[:alpha:]]l[[:alnum:]-1*\.[[:alpha:]][[:alpha:]]*

CST8177 - Todd Kelley

25

mailto:someone@somewhere.com

Basic Regular Expression Examples

» any line containing only alphabetic characters
(at least one), and no digits or anything else
" [:alpha:]][[:alpha:]]1*sS

» any line that begins with digits (at least one)

> In other words, lines that begin with a digit
M [:digit:]]
~[[:digit:]1]1.*$ would match the exact same lines in grep

» any line that contains at least one character of
any kind

~ .. *$ would match the exact same lines in grep

CST8177 - Todd Kelley

26

vi examples

» To do search and replace in vi, can search for
a regex, then make change, then repeat
search, repeat command

» In vi (and sed, awk, more, less) we
delimit regular expressions with /

» capitalize sentences

- any lower case character followed by a period and
one or two spaces should be replaced by a capital
search for /\. [[:lower:]]/
then type 4~
then type n. as many times as necessary

n moves to the next occurrence, and . repeats the
capitalization command

(0]

O

(0]

o

\\\\\\

CST8177 - Todd Kelley

27

vi examples (cont'd)

» uncapitalize in middle of words

(0]

any upper case character not preceded by
whitespace should be uncapitalized

type /[[:lower:]] [[:upper:]]

notice the second / is optional and not present here
then type 1 to move one to the left

type ~ to change the capitalization

type nl. as necessary

the 1 is needed because vi will position the cursor
on the first character of the match, which in this
case is a character that doesn't change.

CST8177 - Todd Kelley 28

Regular Expressions (again)

» Now three kinds of matching
1. Filename globbing
used on shell command line, and shell matches these
patterns to filenames that exist
used with the find command (quote from the shell)
2. Basic Regular Expressions, used with
- vi (use delimiter)
- more (use delimiter)
- sed (use delimiter)
- awk (use delimiter)
- grep (no delimiter, but we quote from the shell)
3. Extended Regular Expressions
- less (use delimiter)
- grep -E (no delimiter, but quote from the shell)
- perl regular expressions (not in this course)

CST8177 - Todd Kelley

29

Regex versus Globbing

» 1s a*.txt # this is filename globbing

- The shell expands the glob before the 1s command runs
> The shell matches existing filenames in current directory
beginning with 'a’, ending in ".txt'
» grep 'aa*' foo.txt # regular expression

- Grep matches strings in foo.txt beginning with 'a' followed
by zero or more 'a's

- the single quotes protect the "*' from shell filename
globbing

» Be careful with quoting:

- grep aa* foo.txt # no single quotes, bad idea

- shell will try to do filename globbing on aa*, changing it into

existing filenames that begin with aa before grep runs: we don't
~want that.

CST8177 - Todd Kelley

30

Extended versus Basic

» All of what we've officially seen so far, except
that one use of parenthesis many slides back,
are the Basic features of regular expressions

» Now we unveil the Extended features of
regular expressions

» In the old days, Basic Regex implementations
didn't have these features

» Now, all the Basic Regex implementations
we'll encounter have these features

» The difference between Basic and Extended
Regular expressions is whether you use a

backslash to make use of these Extended
features

CST8177 - Todd Kelley 31

Repeat preceding (Repetition)

*

\?

\+
\{n\}
\{n,\}
\{n,m\}

*

?

|

Zero or more times

Zero or one times

one or more times

n times, n is an integer

n or more times, n is an integer

at least n, at most m times, n and m are
integers

CST8177 - Todd Kelley

32

Alternation (one or the other)

» can do this with Basic regex in grep with -e
- example: grep -e 'abc' -e 'def' foo.txt
> matches lines with abc or def in foo.txt

» \ | is an infix "or" operator
» a\ |b means a or b but not both

» aa*\ |bb* means one or more a's, or one or
more b's

» for extended regex, leave out the \, as in a|b

CST8177 - Todd Kelley

33

Precedence

» repetition is tightest (think exponentiation)

- xX* means X followed by x repeated, not xx
repeated

» concatenation is next tightest (think
multiplication)
- aa*\|bb* means aa* or bb*
» alternation is the loosest or lowest
nrecedence (think addition)

» Precedence can be overridden with
narenthesis to do grouping

CST8177 - Todd Kelley 34

Grouping

» \ (and \) can be used to group reqgular
expressions, and override the precedence
rules

» For Extended Regular Expressions, leave out
the \, as in (and)

» abb* means ab followed by zero or more b's

» a\ (bb\) *c means a followed by zero or
more pairs of b's followed by ¢

» abbb\ | cd would mean abbb or cd

» a\ (bbb\ | c\)d would mean a, followed by
bbb or c, followed by d

CST8177 - Todd Kelley 35

Precedence rules summary

grouping () or \(\) parentheses
brackets
repetition *or?or + or{n}or{n,} or {n,m} exponentiation
*or \?or \+ or \{n\} or \{n,\} or \{n,m\}
concatenation ab multiplication
alternation | or \| addition

CST8177 - Todd Kelley 36

Remove meaning of metacharacter

» To remove the special meaning of a
metacharacter, put a backslash in front of it

» * matches a literal *
» \. matches a literal .

» \\ matches a literal \
» \$ matches a literal $
» \A matches a literal A

» For the extended functionality,
- backslash turns it on for basic regex
- backslash turns it off for extended regex

CST8177 - Todd Kelley 37

Tags or Backreferences

» Another extended regular expression feature

» When you use grouping, you can refer to the
n'th group with \n

» \ (..*\)\1 means any sequence of one or
more characters twice in a row

» The \1 in this example means whatever the
thing between the first set of \ (\) matched
» Example (basic regex):

\ (aa*\)b\1l means any number of a's
followed by b followed by exactly the same
number of a's

CST8177 - Todd Kelley 38

Extended Regex Examples

» phone number
- 3 digits, optional dash, 4 digits
- we couldn't do optional single dash in basic regex

[[:digit:]]1{3}-2[[:digit:]]{4}
» postal code
- A9A 9A9
- Same as basic regex
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

» email address (simplified, lame)

o]

- domain name cannot begin with digit or dash
[[:alnum:]_-1+@([[:alpha:]l[[:alnum:]-]+\.)+[[:alpha:]] +

CST8177 - Todd Kelley

39

mailto:someone@somewhere.com

