
Regular Expressions

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 POSIX character classes

 Some Regular Expression gotchas

 Regular Expression Resources

 Assignment 3 on Regular Expressions

 Basic Regular Expression Examples

 Extended Regular Expressions

 Extended Regular Expression Examples

2

 Character classes are lists of characters inside
square brackets

 The work the same in regex as they do in
globbing

 Character class expressions always match
EXACTLY ONE character (unless they are
repeated by appending '*')

 [azh] matches "a" or "h" or "z"

CST8177 – Todd Kelley 3

 Non-special characters inside the square
brackets form a set (order doesn't matter,
and repeats don’t affect the meaning):
◦ [azh] and [zha] and [aazh] are all equivalent

 Special characters lose their meaning when
inside square brackets, but watch out for ^,
], and – which do have special meaning
inside square brackets, depending on where
they occur

CST8177 – Todd Kelley 4

 ^ inside square brackets makes the character
class expression mean "any single character
UNLESS it's one of these"

 [^azh] means "any single character that is
NOT a, z, or h"

 ^ has its special "inside square brackets"
meaning only if it is the first character inside
the square brackets

 [a^zh] means a, h, z, or ^

 Remember, leading ^ outside of square
brackets has special meaning "match
beginning of line"

CST8177 – Todd Kelley 5

] can be placed inside square brackets but it
has to be first (or second if ^ is first)

 []azh] means], a, h, or z

 [^]azh] means "any single character that is
NOT], a, h, or z"

 Attempting to put]inside square brackets in
any other position is a syntax error:
◦ [ab]d] is a failed attempt at [ab][d]

◦ [] is a failed attempt at []]

CST8177 – Todd Kelley 6

 - inside square brackets represents a range
of characters, unless it is first or last

 [az-] means a, z, or -

 [a-z] means any one character between a
and z inclusive (but what does that mean?)

 "Between a and z inclusive" used to mean
something, because there was only one locale

 Now that there is more than one locale, the
meaning of "between a and z inclusive" is
ambiguous because it means different things
in different locales

CST8177 – Todd Kelley 7

 i18n basically means "support for more than one locale"

 Not all computer users use the same alphabet

 When we write a shell script, we want it to handle text and filenames
properly for the user, no matter what language they use

 In the beginning, there was ASCII, a 7 bit code of 128 characters

 Now there’s Unicode, a table that is meant to assign an integer to
every character in the world

 UTF-8 is an implementation of that table, encoding the 7-bit ASCII
characters in a single byte with high order bit of 0

 The 128 single-byte UTF-8 characters are the same as true ASCII
bytes (both have a high order bit of 0)

 UTF-8 characters that are not ASCII occupy more than one byte, and
these give us our accented characters, non-Latin characters, etc

 Locale settings determine how characters are interpreted and
treated, whether as ASCII or UTF-8, their ordering, and so on

CST8177 – Todd Kelley 8

 A locale is the definition of the subset of a user's environment that
depends on language and cultural conventions.

 For example, in a French locale, some accented characters qualify as
'lower case alphabetic", but in the old "C" locale, ASCII a-z contains
no accented characters.

 Locale is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behavior
of components of the system.

 Category names correspond to the following environment variable
names (the first three especially can affect the behavior of our shell
scripts):
◦ LC_ALL: Overrides any individual setting of the below categories.

◦ LC_CTYPE: Character classification and case conversion.

◦ LC_COLLATE: Collation order.

◦ LC_MONETARY: Monetary formatting.

◦ LC_NUMERIC: Numeric, non-monetary formatting.

◦ LC_TIME: Date and time formats.

◦ LC_MESSAGES: Formats of informative and diagnostic messages and interactive
responses.

CST8177 – Todd Kelley 9

$ export LC_ALL=C

$ echo *

A B C Z a b c z

$ echo [a-z]*

a b c z

$ export LC_ALL=en_CA.UTF-8

$ echo *

A a B b C c Z z

$ echo [a-z]*

a B b C c Z z

$

CST8177 – Todd Kelley 10

 Do not use ranges in bracket expressions

 We now use special symbols to represent the
sets of characters that we used to represent
with ranges.

 These all start with [: and end with :]

 For example lower case alphabetic characters
are represented by the symbol [:lower:]
◦ [[:lower:]] matches any lower case alpha char

◦ [AZ[:lower:]12] matches A, Z, 1, 2, or any
lower case alpha char

CST8177 – Todd Kelley 11

 [:alnum:] alphanumeric characters

 [:alpha:] alphabetic characters

 [:cntrl:] control characters

 [:digit:] digit characters

 [:lower:] lower case alphabetic characters

 [:print:] visible characters, plus [:space:]

 [:punct:] Punctuation characters and other symbols
◦ !"#$%&'()*+,\-./:;<=>?@[]^_`{|}~

 [:space:] White space (space, tab)

 [:upper:] upper case alphabetic characters

 [:xdigit:] Hexadecimal digits

 [:graph:] Visible characters (anything except spaces
and control characters)

CST8177 – Todd Kelley 12

 POSIX character classes go inside […]

 examples
◦ [[:alnum:]] matches any alphanumeric character

◦ [[:alnum:]}] matches one alphanumeric or }

◦ [[:alpha:][:cntrl:]] matches one alphabetic or
control character

 Take NOTE!
◦ [:alnum:] matches one of a,:,l,n,u,m (but grep on

the CLS will give an error by default)

◦ [abc[:digit:]] matches one of a,b,c, or a digit

CST8177 – Todd Kelley 13

 The exact content of each character class
depends on the local language.

 Only for plain ASCII is it true that "letters"
means English a-z and A-Z.

 Other languages have other "letters", e.g. é, ç,
etc.

 When we use the POSIX character classes, we
are specifying the correct set of characters for
the local language as per the POSIX
description

CST8177 – Todd Kelley 14

 Remember any match will be a long as
possible
◦ aa* matches the aaa in xaaax just once, even

though you might think there are three smaller
matches in a row

 Unix/Linux regex processing is line based
◦ our input strings are processed line by line

◦ newlines are not considered part of our input string

◦ we have ^ and $ to control matching relative to
newlines

15

 expressions that match zero length strings
◦ remember that the repetition operator * means

"zero or more"

◦ any expression consisting of zero or more of
anything can also match zero

◦ For example, x*, "meaning zero or more x
characters", will match ANY line, up to n+1 times,
where n is the number of (non-x) characters on that
line, because there are zero x characters before and
after every non-x character

◦ grep and regexpal.com cannot highlight matches
of zero characters, but the matches are there!

CST8177 – Todd Kelley 16

 quoting (don't let the shell change regex
before grep sees the regex)

$ mkdir empty

$ cd empty

$ grep [[:upper:]] /etc/passwd | wc

 503 2009 39530

$ touch Z

$ grep [[:upper:]] /etc/passwd | wc

 7 29 562

$ touch A

$ grep [[:upper:]] /etc/passwd | wc

 87 343 7841

$ chmod 000 Z

$ grep [[:upper:]] /etc/passwd | wc

grep: Z: Permission denied

 87 343 7841

CST8177 – Todd Kelley 17

 quoting (don't let the shell change regex
before grep sees the regex)

$ mkdir empty

$ cd empty

$ grep [[:upper:]] /etc/passwd | wc

 503 2009 39530

$ touch Z

$ grep [[:upper:]] /etc/passwd | wc

 7 29 562

$ touch A

$ grep [[:upper:]] /etc/passwd | wc

 87 343 7841

$ chmod 000 Z

$ grep [[:upper:]] /etc/passwd | wc

grep: Z: Permission denied

 87 343 7841

CST8177 – Todd Kelley 18

 To explain the previous slide, use echo to
print out the grep command you are actually
running:

$ echo grep [[:upper:]] /etc/passwd

grep A Z /etc/passwd

$ rm ?

$ echo grep [[:upper:]] /etc/passwd

grep [[:upper:]] /etc/passwd

CST8177 – Todd Kelley 19

 we will not use range expressions

 we'll standardize on en_CA.UTF-8 so that the
checking script for assignments always sees
things formatted the same way

 We don't set locale environment variables in
our scripts (why?)

CST8177 – Todd Kelley 20

 http://www.regular-
expressions.info/tutorial.html

 http://lynda.com

 http://regexpal.com

CST8177 – Todd Kelley 21

http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://lynda.com

 Some students are already comfortable with
the command line

 For those who aren't, yet another tutorial
source that might help is Lynda.com

 All Algonquin students have free access to
Lynda.com

 Unix for Mac OSX users:
http://www.lynda.com/Mac-OS-X-10-6-tutorials/Unix-for-Mac-OS-X-
Users/78546-2.html

CST8177 – Todd Kelley 22

 Lynda.com has a course on regular expressions

 The problem is that it covers our material as well as some
more advanced topics that we won't cover

 It is a good presentation, and the following chapters should
have minimal references to the "too advanced" material
◦ Chapter 2 Characters

◦ Chapter 3 Character Sets

◦ Chapter 4 Repetition Expressions

 On campus use this URL:

http://www.lynda.com/Regular-Expressions-tutorials/Using-Regular-
Expressions/85870-2.html

 Off campus use this URL:

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-
tutorials/Using-Regular-Expressions/85870-2.html

CST8177 – Todd Kelley 23

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html

 Assignment 3 asks you to write shell scripts

 These are simple scripts: just the script header,
and a grep command where coming up with the
regex is your work to be done

 You don't need extended regular expression
functionality, and the checking script will disallow
it

 We will cover extended regular expression
functionality below

CST8177 – Todd Kelley 24

 phone number
◦ 3 digits, dash, 4 digits
[[:digit:]][[:digit:]][[:digit:]]-[[:digit:]][[:digit:]][[:digit:]][[:digit:]]

 postal code
◦ A9A 9A9
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

 email address (simplified, lame)
◦ someone@somewhere.com

◦ domain name cannot begin with digit
[[:alnum:]_-][[:alnum:]_-]*@[[:alpha:]][[:alnum:]-]*\.[[:alpha:]][[:alpha:]]*

CST8177 – Todd Kelley 25

mailto:someone@somewhere.com

 any line containing only alphabetic characters
(at least one), and no digits or anything else
^[[:alpha:]][[:alpha:]]*$

 any line that begins with digits (at least one)
◦ In other words, lines that begin with a digit
^[[:digit:]]

^[[:digit:]].*$ would match the exact same lines in grep

 any line that contains at least one character of
any kind

.

^..*$ would match the exact same lines in grep

CST8177 – Todd Kelley 26

 To do search and replace in vi, can search for
a regex, then make change, then repeat
search, repeat command

 in vi (and sed, awk, more, less) we
delimit regular expressions with /

 capitalize sentences
◦ any lower case character followed by a period and

one or two spaces should be replaced by a capital

◦ search for /\. [[:lower:]]/

◦ then type 4~

◦ then type n. as many times as necessary

◦ n moves to the next occurrence, and . repeats the
capitalization command

CST8177 – Todd Kelley 27

 uncapitalize in middle of words
◦ any upper case character not preceded by

whitespace should be uncapitalized

◦ type /[[:lower:]][[:upper:]]

◦ notice the second / is optional and not present here

◦ then type l to move one to the left

◦ type ~ to change the capitalization

◦ type nl. as necessary

◦ the l is needed because vi will position the cursor
on the first character of the match, which in this
case is a character that doesn't change.

CST8177 – Todd Kelley 28

 Now three kinds of matching
1. Filename globbing

 used on shell command line, and shell matches these

 patterns to filenames that exist

 used with the find command (quote from the shell)

2. Basic Regular Expressions, used with

 vi (use delimiter)

 more (use delimiter)

 sed (use delimiter)

 awk (use delimiter)

 grep (no delimiter, but we quote from the shell)

3. Extended Regular Expressions

 less (use delimiter)

 grep –E (no delimiter, but quote from the shell)

 perl regular expressions (not in this course)

CST8177 – Todd Kelley 29

 ls a*.txt # this is filename globbing
◦ The shell expands the glob before the ls command runs

◦ The shell matches existing filenames in current directory
beginning with 'a', ending in '.txt'

 grep 'aa*' foo.txt # regular expression
◦ Grep matches strings in foo.txt beginning with 'a' followed

by zero or more 'a's

◦ the single quotes protect the '*' from shell filename
globbing

 Be careful with quoting:
◦ grep aa* foo.txt # no single quotes, bad idea

 shell will try to do filename globbing on aa*, changing it into
existing filenames that begin with aa before grep runs: we don't
want that.

CST8177 – Todd Kelley 30

 All of what we've officially seen so far, except
that one use of parenthesis many slides back,
are the Basic features of regular expressions

 Now we unveil the Extended features of
regular expressions

 In the old days, Basic Regex implementations
didn't have these features

 Now, all the Basic Regex implementations
we'll encounter have these features

 The difference between Basic and Extended
Regular expressions is whether you use a
backslash to make use of these Extended
features

CST8177 – Todd Kelley 31

CST8177 – Todd Kelley 32

Basic Extended Repetition Meaning

* * zero or more times

\? ? zero or one times

\+ + one or more times

\{n\} {n} n times, n is an integer

\{n,\} {n,} n or more times, n is an integer

\{n,m\} {n,m} at least n, at most m times, n and m are
integers

 can do this with Basic regex in grep with –e
◦ example: grep –e 'abc' –e 'def' foo.txt

◦ matches lines with abc or def in foo.txt

 \| is an infix "or" operator

 a\|b means a or b but not both

 aa*\|bb* means one or more a's, or one or
more b's

 for extended regex, leave out the \, as in a|b

CST8177 – Todd Kelley 33

 repetition is tightest (think exponentiation)
◦ xx* means x followed by x repeated, not xx

repeated

 concatenation is next tightest (think
multiplication)
◦ aa*\|bb* means aa* or bb*

 alternation is the loosest or lowest
precedence (think addition)

 Precedence can be overridden with
parenthesis to do grouping

CST8177 – Todd Kelley 34

 \(and \) can be used to group regular
expressions, and override the precedence
rules

 For Extended Regular Expressions, leave out
the \, as in (and)

 abb* means ab followed by zero or more b's

 a\(bb\)*c means a followed by zero or
more pairs of b's followed by c

 abbb\|cd would mean abbb or cd

 a\(bbb\|c\)d would mean a, followed by
bbb or c, followed by d

CST8177 – Todd Kelley 35

CST8177 – Todd Kelley 36

Operation Regex Algebra

grouping () or \(\) parentheses
brackets

repetition * or ? or + or {n} or {n,} or {n,m}
* or \? or \+ or \{n\} or \{n,\} or \{n,m\}

exponentiation

concatenation ab multiplication

alternation | or \| addition

 To remove the special meaning of a
metacharacter, put a backslash in front of it

 * matches a literal *

 \. matches a literal .

 \\ matches a literal \

 \$ matches a literal $

 \^ matches a literal ^

 For the extended functionality,
◦ backslash turns it on for basic regex

◦ backslash turns it off for extended regex

CST8177 – Todd Kelley 37

 Another extended regular expression feature

 When you use grouping, you can refer to the
n'th group with \n

 \(..*\)\1 means any sequence of one or
more characters twice in a row

 The \1 in this example means whatever the
thing between the first set of \(\) matched

 Example (basic regex):

\(aa*\)b\1 means any number of a's
followed by b followed by exactly the same
number of a's

 CST8177 – Todd Kelley 38

 phone number
◦ 3 digits, optional dash, 4 digits

◦ we couldn't do optional single dash in basic regex
[[:digit:]]{3}-?[[:digit:]]{4}

 postal code
◦ A9A 9A9

◦ Same as basic regex
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

 email address (simplified, lame)
◦ someone@somewhere.com

◦ domain name cannot begin with digit or dash
[[:alnum:]_-]+@([[:alpha:]][[:alnum:]-]+\.)+[[:alpha:]]+

CST8177 – Todd Kelley 39

mailto:someone@somewhere.com

