CST8177 - Linux Il

Shell Scripting

Todd Kelley
kelleyt@algonquincollege.com

CST8207 - Todd Kelley



Shell scripting

4

If we have a set of commands that we want to run
on a regular basis, we could write a script

A script acts as a Linux command, similarly to
binary programs and shell built in commands

In fact, check out how many scripts are in /bin and
/usr/bin

o file /bin/* | grep 'script'

o file /usr/bin/* | grep 'script'

As a system administrator, you can make your job
easier by writing your own custom scripts to help
automate tasks

Put your scripts in ~/bin, and they behave just like
other commands (if your PATH contains ~/bin)

\\\\\\\\\\\\\

CST8177 - Todd Kelley



Standard Script Header

» As we've already discussed, it's good practice to
use a standard header at the top of our scripts

» You could put this in a file that you keep in a
convenient place, and copy that file to be the
beginnings of any new script you create

» Or, copy an existing script that already has the
header

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

umask 022 # use 077 for secure scripts

CST8177 - Todd Kelley



Interpreter Magic, or Shebang

» The interpreter magic, or "shebang":

#!/bin/sh -u

- #! need to be the first two characters in the file, because
they form a magic number that tells the kernel this is a
script

- #! is followed by the absolute path of the binary program
that kernel will launch to interpret (that is, run) the script,
/bin/sh in our case, and arguments can be supplied, —u in
our case

- The —u flag tells the shell to generate an error if the script
tries to make use of a variable that's not set

- That will never happen if the script is well written and tested

- If it does happen, it's better to stop processing than continue
processing garbage.

CST8177 - Todd Kelley



Standard Script Header (cont'd)

» Set the PATH

» The script will run the standard commands from
the standard locations

PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

» Set the umask

» Any files the script creates should have sane
permissions, and we lean to the secure side

umask 022 # use 077 for secure scripts

CST8177 - Todd Kelley



stdin, stdout,stderr

» We then follow the header with commands
like the ones we type at the shell prompt.

» The stdin, stdout, stderr of the of the
commands inside the script are the stdin,
stdout, stderr of the script as it is run.

» When a command in your script prints
output to stdout, your script will print that
output to its stdout

» When a command in your script reads from
stdin, your script reads from stdin

CST8177 - Todd Kelley



Scripting techniques

» Today we cover the following scripting topics

» Running scripts
> arguments passed on the command line
> ways to invoke a script
» Writing scripts
c eXamining exit status
positional parameters and receiving arguments
variables
interacting with the user
the test program for checking things
control flow with if statements, looping, etc

o

(0]

o

o

o

CST8177 - Todd Kelley



Arguments on the command line

» we supply arguments to our script on the
command line (as with any command args)

» command is executable and in PATH
command argl argZ2 arg3

» command. sh is executable and in PATH
command.sh argl arg2 args3

» command. sh is executable and not necessarily
In PATH

./command.sh argl arg2 arg3

CST8177 - Todd Kelley



Arguments on the command line

» We can also invoke the script interpreter
directly, with its own arguments

» We pass the file containing the script after the
Interpreter arguments

» The shebang line mechanism is not being
used in this form

sh —u command.sh argl arg?Z2 arg3
sh -u ./command.sh argl arg2 arg3
» The arguments seen by our script are
argl argZ2 arg3

CST8177 - Todd Kelley



Quoting and arguments

command "a b c¢"
> 1 argument

*a b c

command 'a b ¢"'" "d 'e "
° 2 arguments
ca b c" andd 'e f

command 'a ' b ""def"'
> 3 arguments
- a and b and "def"

command 'a b'" "¢ 'd e!' "
° 2 arguments
cabandc 'd e' f

CST8177 - Todd Kelley



Exit Status

» Each command finishes with an exit status
» The exit status is left in the variable 2 (5?)

» A non-zero exit status normally means
something went wrong (grep is an exception)

» hoh-zero means 'false"

» A exit status of 0 normally means everything
was OK

» 0 means "true"

» grep returns 0 if a match occurred, 1 if not,
and 2 if there was an error

CST8177 - Todd Kelley 11



Checking Exit status

» On the command line, after running a
command we can use echo $? immediately
after a command runs to check the exit status
of that command

[tgk@kelleyt ~]1$ 1s

accounts empty rpm test.sh

[tgk@kelleyt ~]$ echo $°?

0

[tgk@kelleyt ~]$ 1s nosuchfile

ls: cannot access nosuchfile: No such file or directory
[tgk@kelleyt ~]$ echo $°?
2
[

tgklkelleyt ~1$

CST8177 - Todd Kelley 12



Positional Parameters

» When our script is running, the command line
arguments are available as Positional
Parameters

» The script accesses these through variables.

» S# holds the number of arguments on the
command line, not counting the command
itself

» S0 is the name of the script itself

» $1 through $9 are the first nine arguments
passed to the script on the command line

» After $9, there's ${10}, ${11}, and so on

CST8177 - Todd Kelley 13



Positional Parameters (cont'd)

» $* and $@ both denote all of the arguments
and they mean different things when double
quoted:

> "S$*" is one word with spaces between the
arguments

° "$@" produces a list where each argument is a
separate word

CST8177 - Todd Kelley

14



Sample script

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH
umask 022

# Body of script

myvar="howdy doody"

echo
echo
echo
echo
echo

echo

echo

"The
"The
"The
"The
"The
"The
"The

value of \Smyvar is: Smyvar" #notice backslash
number of arguments is: S#"

command name is S$O"

arguments are: $*"

first argument is: $1"

second argument is: S$2"

third argument is: S$3"

CST8177 - Todd Kelley

15



Interacting with the user

» to get input from the user, we can use the read
builtin

» read returns an exit status of O if it successfully
reads input, or non-zero if it reaches EOF

» read with one variable argument reads a line from
stdin into the variable

» Example:
#!/bin/sh -u
read aline #script will stop, wait for user

echo "you entered: Saline"

CST8177 - Todd Kelley 16



Interacting with the user (cont'd)

» Use the -p option to read to supply the user
with a prompt

» Example
#!/bin/sh -u
read —-p "enter your string:" aline

echo "You entered: Saline"

CST8177 - Todd Kelley

17



Interacting with the user (cont'd)

» read varl puts the line the user types into the
variable varl

» read varl var2 wvar3 puts the first word of what
the user types in to varl, the second word into
var2, and the remaining words into var3

#!/bin/sh -u

read varl var2 wvar?3

echo "First word: S$Svarl"

echo "Second word: Svar2"

echo "Remaining words: Svar3"

CST8177 - Todd Kelley 18



If statement

1f listl; then
list?2;
fi

» 1istl is executed, and if its exit status is O,
then 1ist2 is executed

» A 1list is a sequence of one or more
pipelines, but for now, let's say it's a
command

CST8177 - Todd Kelley

19



if and else

» We can include an else clause, with
commands to run if 1ist1 is false (has exit
status of non-zero)

1f listl; then
list?2;
else
list3;

fi

CST8177 - Todd Kelley

20



Test program

» A common command to use in the test list of
an if statement is the test command

» man test

» Examples:
» test —e /etc/passwd
» test "this" = "this"

» test 0 —eqg O
» test 0 —ne 1
» test 0 —-1le 1

CST8177 - Todd Kelley

21



If statement with test

1f test
echo
fi

1f test
echo
else

echo

"S1" = "hello"; then
"First arg 1s hello"

"S2" = "hello"; then
"Second arg 1s hello"

"Second arg 1s not hello"

CST8177 - Todd Kelley

22



The program named |

Todd-Kelleys-MacBook-Pro:CST8177-13W tgk$ Is -li /bin/test /bin/[
1733533 -r-xr-xr-x 2 root wheel 43120 27 Jul 2011 /bin/|
1733533 -r-xr-xr-x 2 root wheel 43120 27 Jul 2011 /bin/test
Todd-Kelleys-MacBook-Pro:CST8177-13W tgk$

» notice that on OSX, [ is another name for the test program:

if [ -e /etc/passwd ]; then
echo "/etc/passwd exists"

fi

is the same as

if test -e /etc/passwd; then

echo "/etc/passwd exists"

CST8177 - Todd Kelley



Practicing with [

$[0-eq0]

$ echo $?

0

$ [ "this" = "that" ]
$ echo $?

]

$ [ "this" = "this" ]
echo $?

0

$ ["this" = "this"]
-bash: [this: command not found
$ [ "this" = "this"]
—-bash: [: missing ']’

# forgot the space after [

# forgot the space before ]

CST8177 - Todd Kelley

24



Integer tests (man test)

4

INTEGER1 -eq INTEGER?2

INTEGERT is equal to INTEGER?2
INTEGER1 -ge INTEGER?2

INTEGERT1 is greater than or equal to INTEGER?2
INTEGER1 -gt INTEGER?2

INTEGERT is greater than INTEGER?2
INTEGERT -le INTEGER?2

INTEGERT1 is less than or equal to INTEGER?2
INTEGERT —It INTEGER?2

INTEGERT is less than INTEGER2
INTEGER1 -ne INTEGER?2

INTEGERT is not equal to INTEGER?2

CST8177 - Todd Kelley

25



String tests (man test)

4

-n STRING

the length of STRING is nonzero
STRING equivalent to —n STRING
-z STRING

the length of STRING is zero
STRING1 = STRING2

the strings are equal
STRING1 !'= STRING?2

the strings are not equal

CST8177 - Todd Kelley

26



file tests (man test)

» These are just a few of them See man test for more:
»  —d FILE
FILE exists and is a directory

» -e FILE
FILE exists
» —f FILE
FILE exists and is a regular file
b -r FILE
FILE exists and read permission is granted
3 -w FILE

FILE exists and write permission is granted
b -X FILE
FILE exists and execute (or search) permission is granted

CST8177 - Todd Kelley

27



Combining tests

( EXPRESSION )

EXPRESSION is true
I EXPRESSION

EXPRESSION is false
EXPRESSION1 -a EXPRESSION?2

both EXPRESSION1 and EXPRESSION?Z2 are true

EXPRESSION1 -0 EXPRESSION?Z

either EXPRESSION1 or EXPRESSION?Z is true

v

v

v

v

CST8177 - Todd Kelley

28



test examples

» test is a program we run just to find out its
exit status

» The arguments to the test command specify
what we're testing

» The spaces around the arguments are
important because test will not separate

arguments for you:

o "g"™ ="a" is the same as a =a which is two args
and test wants three with the second one =

» When trying out test examples, we can run
test and find out the results by looking at $?
immediately after the test command finishes

CST8177 - Todd Kelley

29



test examples (cont'd)

» Alternatively, we can try any example by
putting it in an if-statement:

1f [ O —eg 1 ]; then
echo that test 1s true

else
echo that test i1s false
fi

CST8177 - Todd Kelley

30



test examples (strings)

» Is the value of myvar an empty (zero-length)
string?

[ -z "Smyvar" ]

» Is the value of myvar a non-empty string?
[ -n "S$myvar" ]
or

[ " $myvaru ]

CST8177 - Todd Kelley

31



test examples (strings cont'd)

» Is the value of myvar equal to the string

"yes"?
[ n$myvarn — "yes" ]
or
[ "Smyvar" = yes ]
or
[ "yes" — n$myvarn ]
or

[ yes = "Smyvar" ]

CST8177 - Todd Kelley

32



test examples (strings cont'd)

» Is the value of myvar NOT equal to the string

"yes"?
[ "Smyvar" != "yes" ]
or
[ ! "Smyvar" = yes ]
or
[ "yes" != "Smyvar" ]
or

[ ! yes = "Smyvar" ]

CST8177 - Todd Kelley 33



test examples (integers)

» Is the value of myvar a number equal to 4?
[ "Smyvar" -eqgq "4" ]
or
[ "Smyvar" -eq 4 ]

» Notice that double quotes around a number
just means the shell will not honor special
meaning, if any, of the characters inside

» Digits like 4 have no special meaning in the
first place, so double quotes do nothing

CST8177 - Todd Kelley 34



test examples (integers)

» Is the value of myvar a number NOT equal to

47
[ "S$Smyvar" -ne 4 ]
or
[ ! 4 -eq "Smyvar" ]
or
[ ! "Smyvar" -eq 4 ]
or

[ "Smyvar" -ne 4 ]

CST8177 - Todd Kelley

35



test examples (integers)

» IS 00 a number equal to 0? yes

[ 00 —eg 0 ]
» Is 004 a number equal to 4? yes

[ 004 —-eqg 4 ]
» Notice double quotes don't change anything
» Is 00 equal to 0 as strings? no
[ 00 = 0 ]

» IS 0004 equal to 4 as strings? no

[ 0004 = 4 ]

CST8177 - Todd Kelley

36



test examples

» Is abc a number equal to 07 error
[ abc —eg 0 ] ERROR abc is not a number

» The following is the same as [ 1 ] with
stdin redirected from file named 2

[ 1 < 2 ]

» Remember we can put redirection anywhere
in the command we want:

ls > myfile
is the same as
> myfile 1s

CST8177 - Todd Kelley

37



test examples (files)

» Does /etc/passwd exist?
[ —e /etc/passwd ]
» Does /etc exist?
[ —e /etc ]

» Does the value of myvar exist as a file or
directory?

[ —e "Smyvar" ]

CST8177 - Todd Kelley

38



test examples (files)

» IS /etc/passwd readable?
[ -r /etc/passwd ]
» Is /etc readable?
[ -r /etc ]

» Is the value of myvar readable as a file or
directory?

[ —-r "Smyvar" ]
» Not readable?

[ ! —r "Smyvar" ]

CST8177 - Todd Kelley

39



test (combining tests)

» If we need to check whether two files both
exist, we check for each individually, and
combine the tests with —a, meaning AND

[ —e /etc/foo —a —e /etc/bar ]

» Given a number in myvar we can check
whether it's greater than or equal to 4 AND
less than or equal to 10

[ "Smyvar" -ge 4 -a "Smyvar" -le 10

CST8177 - Todd Kelley

]

40



test (combining tests)

» If we need to check whether at least one of
two files exists, we check for each
individually, and combine the tests with -o,
meaning OR

[ —e /etc/foo -0 —-e /etc/bar ]

» Given a number in myvar we can check
whether it's greater than or equal to 4 OR less
than or equal to 10

[ "Smyvar" -ge 4 -o "Smyvar" -le 10 ]

CST8177 - Todd Kelley

41



test (not)

» We can use ! to test is something is NOT true
» Test whether /etc/passwd is NOT executable
[ ! —e /etc/passwd ]

CST8177 - Todd Kelley

42



test (parenthesis)

» Just like arithmetic, we use parenthesis to
control the order of operations

» Remember that ( and ) are special to the shell
so they need to be escaped or quoted from
the shell

» Check whether filel or file2 exists, and
also check whether 1 is less than 2:

[ \( —e filel -0 —e file2 \) —-a 1 -1t 2 ]

» Without parentheses we'd be testing whether filel
exists, or whether file2 exists and 1 is less than 2

CST8177 - Todd Kelley 43



test (order of operations)

» Like regular expressions, to get comfortable
with the order of operations, we can borrow
our comfort with arithmetic expressions

test arithmetic alalog | comment
operation

() () \(and \) or '(" and ")' to protect from
shell

! - That's the arithmetic unary "oposite
of" operator, as in -4 or -(2+2)

-a multiplication
-0 addition

CST8177 - Todd Kelley 44



Example 1: capitalize.sh

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH
umask 022
echo "You passed S$# arguments, and those are:S$*:"
if [ $# -eqg 0 ]; then

echo "You didn't give me much to work with"
else

echo -n "Here are the arguments capitalized:"

echo "$*" | tr '"[[:lower:]]" '[[:upper:]1]"

fi

CST8177 - Todd Kelley

45



stderr versus stdout

» Often the purpose of a script is to produce
useful output, like filenames, or maybe a list
of student numbers
> this output should go to stdout
> it may be redirected to a file for storage
- we don't want prompts and error messages in there

» There may also be other output, like warning
messages, error messages, or prompts for
the user, for example
> this output should go to stderr

- we don't want this type of output to be inseparable
from the real goods the script produces

CST8177 - Todd Kelley

46



Error Messages

» Here is an example of a good error message
echo 1>&2 "$0: Expecting 1 argument; found S$# (S*)"
» Why is it good?

> |t redirects the message to stderr: 1>&2

> |t gives the user all the information they may need
to see what is wrong

- 50 is the name used to invoke the script (remember,
files can have more than one name so it shouldn't be
hard-coded into the script)

- $# is the number of arguments the user passed

- $* shows the actual arguments, put in parenthesis so
the user can see spaces, etc.

CST8177 - Todd Kelley 47



Example 2: match.sh

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH
umask 022
if [ $# -ne 1 ]; then
echo 1>&2 "$0: Expecting 1 argument; found S# ($*)"

else
read -p "Enter your string:" userString
if [ "SuserString”" = "$1" ]; then
echo "The string you entered is the same as the argument"
else
echo "The string you entered is not the same as the argument"
fi
fi

CST8177 - Todd Kelley

48



For loop

for name [ in word... ] ,; do list ; done

» name iS a variable name we make up

» name iS set to each word. .. in turn, and list is
exectuted
» if [ in word... 1 is omitted, the positional

parameters are used instead

CST8177 - Todd Kelley

49



For loop example

for £ 1n hello how are you today;
echo "Operating on Sf"

done

CST8177 - Todd Kelley

do

50



While loop

while command; do
# this code runs over and over
# until command has
# non-zero exit status

done

CST8177 - Todd Kelley

51



While loop example

while read -p "enter a word: " word; do
echo "You entered: Sword"

done

CST8177 - Todd Kelley

52



