
More Scripting Techniques
Scripting Process

Example Script
Todd Kelley

kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 arguments to scripts

 positional parameters

 input using read

 exit status

 test program, also known as [

 if statements

 error messages

 while loops

 for loops

CST8177 – Todd Kelley 2

 why write scripts in the first place?

 lists

 set and shift

 integer arithmetic

 scripting process in general

CST8177 – Todd Kelley 3

1. use when an alias gets too complex, impossible

◦ aliases cannot use arguments in their replacement text

2. make new, specialized commands

◦ look at /bin/gunzip and /bin/zcat

3. automate long and/or complex tasks

◦ example, actually part of the boot system: /etc/rc.d/rc

◦ backup scripts, bulk user creation, other sysadmin

tasks

◦ as we'll see, scripts are the contents of the "regularly

scheduled tasks" directories:

 /etc/cron.{hourly,daily,monthly}/

CST8177 – Todd Kelley 4

 In the general form of the control
statements(examples: if, for, while) in the
bash man page we will see the notion of a list
◦ for name [in word...] ; do list ; done

◦ if list1; then list2; fi

 From the man page for bash:
◦ A list is a sequence of one or more pipelines

separated by one of the operators ;, &, &&, or
||, and optionally terminated by one of ;, &, or
<newline>.

CST8177 – Todd Kelley 5

 Hey, we already know what most of those
mean:
◦ ls –al | more # there's that | operator

 | means redirect output of one command into another

◦ ls –al > foo & # there's that & operator

 & means run the command in the background

 proceed immediately with any command after the &

◦ ls –al ; head myfile # there's the ; operator

 ; means run one command after another

 wait for the first command to finish in the foreground, then
when it's finished, proceed with any command after the ;

CST8177 – Todd Kelley 6

 The new ones are
◦ command1 && command2

◦ command1 || command2

CST8177 – Todd Kelley 7

 && means AND

 This means stop at the first command that
has non-zero exit status

 command1 && command2 is the same as
◦ if command1; then command2; fi

◦ example, suppose we want to run process.sh on a
file, and then remove it:
process.sh /root/testfile && rm –f /root/testfile

 if any thing goes wrong with process.sh (non-zero exit
status), the file is NOT removed

 if the process.sh /root/testfile command goes well
(has zero exit status), THEN the file will be removed

CST8177 – Todd Kelley 8

 || means OR

 This means stop at the first command that
returns a zero exit status

 command1 || command2 is the same as
◦ if command1; then : ; else command2 fi

 : is a command that does nothing!

◦ example, suppose we are writing a script that needs
to process a file, and if that doesn't go well, then
the script should terminate abnormally:

 process /root/testfile || exit 1

 if anything goes wrong with process, the script exits

CST8177 – Todd Kelley 9

 Suppose you might qualify for a scholarship:

 Those who qualify are:
◦ born on the moon, and something

 if we weren't born on the moon, we don't need to know
what the <something> is; we already know we don't
qualify

◦ Algonquin student and something
 in this case, because we are an Algonquin student, we

do need to know what something is to know whether
we qualify

 or in other words
◦ born on the moon && something

◦ Algonquin student && something

CST8177 – Todd Kelley 10

 As soon as we encounter "true", we can stop

 You qualify for a $1000 rebate under the
following conditions:
◦ born on the moon, or ??

◦ Algonquin student, or ??

 In the first case, we need to know what the
exit status of the ?? is, we need to run the ??
command

 In the second case, we can stop before
running the ?? command

CST8177 – Todd Kelley 11

 && and || are used with commands that tend
to get things done
◦ to graduate, you

 complete first year && complete second year

◦ complete first year is a "command" that gets things
done: you learn the first-year material

◦ if you fail first year, you don't attempt second year

 -a and –o are used in test, and don't do
things, just affect the exit status of test
◦ you are a rich Canadian if

 you are Canadian –a you are rich

◦ checking whether or not you're Canadian doesn't
get things done – but it does establish a truth value

CST8177 – Todd Kelley 12

 In our script we can manipulate the positional
parameters

 set command to set them

 shift command to process them in turn

CST8177 – Todd Kelley 13

 We can set the positional parameters with
◦ set – oneword secondword -e etc

 This will set
◦ $1 to oneword

◦ $2 to secondword

◦ $3 to -e

◦ $4 to etc

 Set does take options (see bash manpage)
and that first – tells set there are no more
options (-e in this case is not an option)

 CST8177 – Todd Kelley 14

 shift

 moves all the arguments to the left

 shift n moves all the arguments to the left by
n

 shift
◦ $# is decreased by 1

◦ the pre-shift $1 is lost

◦ $1 becomes what was in $2

◦ $2 becomes what was in $3

◦ $3 becomes what was in $4

 etc

CST8177 – Todd Kelley 15

 The expr command is a common and
traditional way to evaluate arithmetic
expressions

 The arguments to the expr command
constitute the arithmetic expression

CST8177 – Todd Kelley 16

 examples of using expr command:

a=`expr 3 + 4` # a gets set to 7

a=`expr 3 – 4` # a gets set to -1

a=`expr 3 * 4` # a gets set to 12

a=`expr 13 / 5` # integer division: 2

a=`expr 13 % 5` # remainder: 3

 increment the integer in variable a

a=`expr $a + 1` # a gets set to a+1

CST8177 – Todd Kelley 17

 let is not the preferred way to do arithmetic in this
course

 let arg [arg...]
◦ each arg is an arithmetic expression to evaluate

◦ see ARITHMETIC EVALUATION of bash man page

◦ shell variables are allowed with or without $

◦ arithmetic expressions can involve assignment of values to
variables, where "=" is the basic assignment operator

 examples:

let a=1

echo $a

let a=a+1

echo $a

CST8177 – Todd Kelley 18

 let seems great, why not use it?
◦ because it's not as portable as the alternatives

◦ "portable" means you can run your script
unmodified on other systems, maybe running
/bin/dash instead of /bin/bash, and it will work
just as well

 expr is "standard" and works everywhere

 $((arith)) is what you would use if you
don't want to use expr (and it's faster than
expr)
◦ x=0

◦ x=$((x + 1))

◦ x=$(($x + 1))

CST8177 – Todd Kelley 19

 What's the difference between
((expression)) and $((expression))

 $((expression)) is an expansion like a
variable expansion, where $((expression))
is replaced by the results of the evaluated
expression

 ((expression)) is a compound command
equivalent to let expression

CST8177 – Todd Kelley 20

 You can put $((expression)) where you can
put variable expansion like $myvar:

a=0

while ["$a" –lt 10]; do

 echo username: "user$((a+1))"

 a=$((a+1))

done

CST8177 – Todd Kelley 21

 You can use ((expression)) wherever you
would use a command:

((a=0)) # set a to 0

((a=a+1)) # increment a to 1

a=((a+1)) # syntax error

a="((a+1))" # set a to literal string "((a+1))"

a="ls" # set a to literal string "ls"

 In these last two, there is what looks like a
command, ls and ((a+1)), but no command
is run

CST8177 – Todd Kelley 22

 Analyze and understand the problem

 Write pseudocode to document and
understand the problem

 Start with a small number of lines in the
script, and get that working properly

 Add a small amount to the script, and get it
working properly again

 repeat previous step until script is complete

 run final tests

CST8177 – Todd Kelley 23

 Example from Sobell, A Practical Guide to
Linux, Commands, Editors, and Shell Programming, 2nd
Ed, Chapter 10

 lnks script:
◦ Given a filename, find hard links to that file.

◦ Search for hard links under a certain directory if one
is given; otherwise, search for hard links in the
current working directory and its subdirectories.

CST8177 – Todd Kelley 24

 Generally, for any problem, we need to deal
with the following three phases

1. Input

2. Processing

3. Output

CST8177 – Todd Kelley 25

 Input is the information/data that a script
needs before it can do its job

 What is the information?
◦ name of a file

◦ name of a directory

 How does our script get its information?
◦ the description says "given a filename", and

"directory if one is given"

◦ this would imply that those items would be
command line arguments

◦ if the description said "ask for", then the script
would prompt for the information after its running

CST8177 – Todd Kelley 26

 What's the data that will be processed?

 What work will our script do?
◦ the script will look for hard links in the file system

◦ therefore, the data is the contents of the file system

◦ our script will look for hard links in the file system

◦ our script will "read in" this data by running
commands that access the file system (ls, find,
etc)

CST8177 – Todd Kelley 27

 OK, we now understand the problem
◦ take a file name and an optional directory location

as arguments on the command line, and use Linux
commands to find hard links at that the specified
directory (or the current directory if none was
specified) in the file system

 Simple, let's just tell the computer to do that!

CST8177 – Todd Kelley 28

 Our scripts are like little robots that will do
exactly what we tell them to do.

 Imagine you move into a new neighborhood
and you tell your domestic robot to go to the
corner store and bring back a turkey
sandwich and a coke

 The robot comes back with a pound of butter
and a can of crab juice

 You aren't happy, but whose fault is it?
◦ the store had ham, but no turkey, and pepsi, but no

coke

◦ again, whose fault is it that you aren't happy?

CST8177 – Todd Kelley 29

 If they don't have coke, then get pepsi, and if
they don't have pepsi, then nothing, etc, etc

 When we write our scripts, we end up
happiest when we specify absolutely every
single detail of every possible circumstance

 We need to make a conscious effort to predict
all possible ways things can go wrong

 It's a common script beginner's mistake to
think only about everything going right

 The major work is dealing properly with what
goes wrong

CST8177 – Todd Kelley 30

 What if no directory name is given on command
line?
◦ use the current directory (hey, this is easy!)

 What if no file name is given on the command line?
◦ print an error message (but then what?)

 What if the given file name is a directory and not a
regular file?
◦ print an error message and exit

 What if too many names are given?

 What if no hard links are found?

 What if there are no hard links to the file?

 What if the directory is unreadable? Doesn't exist?

 The more "what ifs" our script can handle, the
better...

CST8177 – Todd Kelley 31

 Speaking of "what if"s...

 A Test Plan is a document that describes a
process for verifying that the script does the
right thing every time no matter what

 In simple cases it can be a list of tests, which
would have this form:
◦ test name

◦ short description of what's being tested

◦ command (and/or instructions) for running the test

◦ expected result and/or output from running the
test

◦ the actual result (filled in when a test plan is
executed)

CST8177 – Todd Kelley 32

 As we have seen, the process of
understanding the problem and generating a
test plan both involve "what if" analysis, and
therefore can proceed at the same time

 The plan for testing the final result begins to
form early (maybe even before the problem is
fully understood!)

CST8177 – Todd Kelley 33

 Start small and get that working, and then add to it

 Let's start with just the "input" phase:

#!/bin/sh –u

PATH=/bin:/usr/bin ; export PATH

umask 022

identify links to a file

Usage: $0 file [directory]

if [$# -eq 0 –o $# -gt 2]; then

 echo 1>&2 "Usage $0 file [directory]"

 exit 1

fi

 Continue on real Linux system....

CST8177 – Todd Kelley 34

 After finishing the Input stage, we have our
file name and directory under which to search

 How do we find the hard links?

 Think about hard links...
◦ If we know the inode of the file, then all hard links

to the same file will have the same inode

◦ We can get the inode of the file using ls

◦ We can look for files with the same inode using
find

CST8177 – Todd Kelley 35

 Getting the inode number into a variable
named inode so we can refer to it as $inode

 Consider the output of ls -i

 Assuming the filename is in $file, Each of
the following will do the trick:
◦ inode=`ls -i "$file" | awk '{print $1}'`

OR

◦ set - `ls –i "$file"`

◦ inode=$1

OR

◦ inode=$(ls –i "$file" | cut –d' ' –f1)

CST8177 – Todd Kelley 36

 Now that we have the inode, how do we find
other files with that inode?

 This literally has the find command written
all over it! (man find)

find "$directory" –inum "$inode" -print

CST8177 – Todd Kelley 37

 How does our script deliver its results?

 Should the names be put in a special file
somewhere?

 It depends.

 In keeping with the Unix filter/pipeline
philosophy, lets have our script print the
names on the standard output

 Hey, find is already printing the names on
its standard output

 Recall that the standard output of the script is
the same as the standard output of the
commands inside the script

CST8177 – Todd Kelley 38

 Notice that errors and other messages should
be printed on standard error

 The "goods" (the actual filenames we were
looking for) are printed on standard output

 That's how we like it, because now we can
redirect standard output to a file, or run it
through grep or any other utility, and we
won't have those messages mixed in

 All of those messages will go to standard
error, which we can also redirect elsewhere if
we want

CST8177 – Todd Kelley 39

 Indenting: look at how the if statements are
indented:

if list; then

 ls –l # indented 4 spaces

fi

 The same would be true of other control
statements:

while list; do

 #indent 4 spaces

done

CST8177 – Todd Kelley 40

 Variables in our scripts have lower case
names

 Environment variables are indicated by their
UPPER CASE names: SHELL, VISUAL, etc

 It's usually best to put variable expansions
inside double quotes, to protect any special
characters that might be inside the variable:

echo "$somevar"
◦ if somevar contained the * character, the double

quotes stop the shell from globbing it

CST8177 – Todd Kelley 41

 The following all mean different things:
◦ run the myvar command with two arguments, = and
value:

myvar = value

◦ set the myvar variable to have value "", then run the
value command with that variable setting in effect

myvar= value

◦ run the myvar command with one argument, namely
=value:

myvar =value

◦ set the variable myvar to have value value

myvar=value

CST8177 – Todd Kelley 42

 -v option for bash/sh
◦ sh –v myscript

◦ shell will print each line as its read

◦ loop statements are printed once

 -x option for bash/sh
◦ sh –x myscript

◦ shell will display $PS4 prompt and the expanded
command before executing it

◦ each loop iteration is shown individually

CST8177 – Todd Kelley 43

 test plan creation involves identifying the
"Boundary Conditions"

 The "typical case" or "normal case" is a
necessary test, and all such cases are
considered equivalent (test one and you've
tested them all)

 Boundary cases are all interesting:
◦ present or missing

◦ too small, just big enough, typical, almost too big,
too big

◦ MINIMUM, ... -1,0,1,... MAXIMUM

CST8177 – Todd Kelley 44

 Suppose you're looking for 8.3 filenames,
where the "main part" is up to 8 characters,
and the extension is exactly 3 characters
◦ main part of filename

 boundaries

 0, 1, 8, 9 characters

 typical case (only one needed)

 2,3,4,5,6,7

◦ extension

 boundaries

 0,3,4

 typical case (same as the boundary) 3

CST8177 – Todd Kelley 45

