
More Scripting
Todd Kelley

kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 Arithmetic

 Output with printf

 Input
◦ from a file

◦ from a command

CST8177 – Todd Kelley 2

 A script can test whether or not standard
input is a terminal

[-t 0]

 What about standard output, and standard
error? (hint, 0, 1, 2)

 For example, if we redirect the output of one
command into our script , then stdin is not a
terminal

CST8177 – Todd Kelley 3

 Occasionally you'll see a command called :

 : arguments

 That command expands its arguments and
does nothing with them, resulting in a 0 exit
status

CST8177 – Todd Kelley 4

 when you finish a script, you need to run it to
verify correct operation

 you're expecting certain things from your
script on certain runs
◦ example: it expects arguments and you supply

none – it should print an error message

◦ example: you supply the wrong number of
arguments – it should print an error message

 run your script with good input, and bad
◦ check that operation is correct for good and bad

◦ testing should "cover" all lines of code: every line of
the script runs at least once during all your testing

CST8177 – Todd Kelley 5

 test your script incrementally as you build it
up into its final form

 you need to be able to determine whether
your script is behaving as you intended

 use –x and/or –v to "watch" it execute:
◦ sh –x –u myscript.sh

◦ -x: print each statement before executing

CST8177 – Todd Kelley 6

 http://teaching.idallen.com/cst8207/13w/notes/320_shell_variables.html

 http://teaching.idallen.com/cst8207/13w/notes/440_quotes.html

 You want variables to be inside double
quotes, for three main reasons:
1. globbing characters inside the variable will not be used to

match filenames when double qoutes are used

2. if the variable is empty, without double quotes it vanishes
completely, and that's normally not what we want

3. Spaces inside the variable will not split the value into
words if double quotes surround the variable

CST8177 – Todd Kelley 7

 If a variable has a null value, as in
myvar=

both of the following result in an error, because myvar is empty

if [$myvar = something] ; then echo yes; fi

after variable expansion the above becomes (error)

if [= something] ; then echo yes; fi

 If we put the same variable in double quotes:
myvar=

both of the following do not result in an error (or any output)

if ["$myvar" = something] ; then echo yes ; fi

after variable expansion the above becomes same as

if ["" = something] ; then echo yes ; fi

CST8177 – Todd Kelley 8

 formatted printing (man printf)

 printf format arguments [...]

◦ format is a string of characters containing

 plain characters: copied straight to output

 escape sequences:

 \n : newline

 \t : tab

 \a : bell (try it!)

 format specifications with three parts

 flag

 width

 precision

CST8177 – Todd Kelley 9

 flags:
◦ -: left justify rather than right justify

◦ +: always display the sign of a number

◦ <space>: minus sign if negative, nothing if positive

◦ 0: pad with 0's instead of spaces

 width:
◦ if the output has fewer than width characters, pad it

with spaces on the left (see flags above) so it
occupies width characters

 precision:
◦ an optional dot and digit string specifying the

maximum number of characters (or number of
digits after the decimal point for 'e' and 'f' –see
below)

CST8177 – Todd Kelley 10

 format: a character specifying the format of
the output
◦ d: decimal integer

◦ f: floating point number

◦ s: string (if precision is 0 or missing, all characters
are printed, otherwise limited by precision)

CST8177 – Todd Kelley 11

printf "hello\tthere"

◦ \t gets replaced with tab

printf "hello %s there" you

◦ prints "hello you there"

printf "hello %10s there" you

◦ prints "hello you there"

 See the file "printf_examples.txt"

for more examples

CST8177 – Todd Kelley 12

case test-string in

 pattern-1)

 command1

 command2

 ;;

 pattern-2)

 command3

 command4

 ;;

 *)

 command5

 ;;

esac

CST8177 – Todd Kelley 13

 the patterns are globbing patterns matched
to the test-string

 So we tend to use the * pattern as a catchall,
if all other matches fail, but that's not
required

 case statement exit status is the exit status of
the last command in the matching block, or 0
if no blocks match

CST8177 – Todd Kelley 14

 We can use the vertical bar to specify
alternative patterns:

case "$character" in

 a|A)

 echo "The character is A or a"

 ;;

 [bB])

 echo "the character is B or b"

 ;;

 *)

 echo "The character is not A or a or B or b"

 ;;

esac

CST8177 – Todd Kelley 15

Some Special References

$BASH the name used to invoke this instance of bash

(/bin/sh if we use "#!/bin/sh" at top of script)

$$ the PID of this shell

$- "sh" options currently set

$? return code from the just-previous command

$! the PID of the most recent background job

Signals and the TRAP statement

• Various signals can be trapped and your own script

code executed instead of the system's normal code.

Although there are up to 64 signals available, we will

consider only a few of them:

 SIGHUP (signal 1 or HUP: hang up) is issued for a

remote connection when the connection is lost or

terminated; it's also used to tap a daemon on the

shoulder, to re-read its config files.

 SIGINT (signal 2 or INT) is the keyboard interrupt signal

given by Control-C.

 SIGKILL (signal 9 or KILL) cannot be ignored or

trapped.

 SIGTERM (signal 15 or TERM) is the default signal

used by kill(1) and killall(1).

Signal-like events and TRAP
 The EXIT event (also "signal" 0) occurs upon exit from

the current shell.

 The DEBUG event takes place before every simple

command, for command, case command, select

command, and before the first command in a function.

See also the description of extdebug for the shopt

built-in for details of its effect.

 The ERR event takes place for each simple command

with a non-zero exit status, subject to these conditions:

it is not executed if the failed command is part of a

while, until, or if condition expression, or in a && or ||

list, or if the command’s return value is being inverted

via !. See also errexit for details.

 The RETURN event occurs each time a shell function or

a script executed with the . (that's a dot) or source built-

in returns to its caller.

Signals and the TRAP statement

 You can set a trap:

 trap 'statement; statement; …' event-list

 The trap statement list is read by the shell twice, first
when it's set (it's set once only, before it is to be used,
and stays active until you clear it).

 It's read a second time when it's executed.

 If you enclose the statement in single quotes,
substitutions only take place at execution time.

 If you use double quotes, substitutions will take place
upon both readings.

 If statement is omitted, the signals (use - (dash)) for all)
are reset to the default.

 If statement is a null (empty) string, the signals specified
will be ignored.

Signals and the TRAP statement
 To set a trap for SIGINT:

 trap 'statement; statement; …' INT

 To turn it off again:

 trap INT

 To prevent any SIGINT handling (ignore signals):

 trap " " INT

 Be cautious in trapping SIGINT: how will you stop a run-
away script?

 To see what traps are set (you can see traps for specific
events by listing the names or numbers):

 trap -p

 To list the names for signals 1 to SIGRTMAX:

 trap -l # that's an ell, not a one

Trap Sample Script
#!/bin/bash

count=0

set trap to echo, then turn itself off

trap 'echo -e \\nSIGINT ignored in $count; \

 trap - sigint' sigint

loop for a while

while ((count < 10)); do

 ((count++))

 read -p "$count loop again? " response

done

if loop ends, display count

echo loop count $count

exit 0

System Prompt$./traptest

1 loop again?

2 loop again?

3 loop again?

4 loop again? y

5 loop again? n

6 loop again?

7 loop again? q

8 loop again? help

9 loop again? ^C

SIGINT ignored in 9

10 loop again? q

11 loop again? y

12 loop again? n

13 loop again? ^C

System Prompt$

Functions in bash

 You will learn that functions are exceptionally useful,

and it's good to see them in bash.

 A function is a group of regular shell-script statements is

a self-contained package.

 You define a function as:

function somename () {

 statement

 statement

 …

}

 And you call it by using the name as if it were a normal

command.

bash Functions

In general:

[function] name () compound-command [redirection]

Any parameters you pass to a function will be positional

parameters inside that function

CST8207 - Shawn Unger 25

A function does not need to return a result, but it may do so in 3 ways

(perhaps all in the same function):

1.set a new value into a variable previously defined outside the function;

2.Use a return statement to set the value of $?; it can also use an exit

to set $?, but that will also exit from the calling script which may not be

what you want.

3.write the results to stdout

Functions

 Function scope is from the point the function is defined

to the end of the file (that is, it must be defined before

you can use it). Generally, that means that all functions

precede the main body of the script.

 As a result, previously-written functions are often

included in a script using the source (also . (dot))

statement near the top of a script.

 You can define local variables to be used only inside

the function, while your normal variables from outside

the function can always be used.

 If you wish, you can pass arguments into a function as

positional parameters ($1 and so on; this is by far the

recommended approach).

Functions

 You may have noticed that traps behave like a special
form of function. They are called (or invoked) by an
event and consist of a collection of command
statements. This is not an accident.

 To unset (delete or remove) a function:

 unset -f functionname

 To list defined function names (note: my system seems
to have over 400 functions, of which I have only defined
4 of my own):

 declare -F | less

 To list functions and definitions:

 declare -f [functionname]

A Simple Sample

The rot13 script is an implementation of the Caesar code

message encryption. It simply rotates the message 13

characters through the alphabet, retaining case. No numbers

or punctuation characters are affected.

rot13 ()

{

 echo "$*" | \

 tr '[a-mA-Mn-zN-Z]' '[n-zN-Za-mA-M]'

 return 0

}

As you can see, rot13 accepts command-line arguments

which it passes via echo through a translate (tr) command

that will print the result on stdout.

Entering rot13 sheesh produces furrfu on stdout, while the

reversed rot13 fuurfu displays sheesh.

When to write a function

There are a lot of scripting situations where writing a short

function of your own is a good idea.

Some of these include:

 Some common activity that will be used frequently

 Part of a larger script that will be repeated at least 2 or 3

times, perhaps slightly differently each time

 An uncommon activity used only once in a while, but you

don't want to have to remember the details

 A tricky bit of logic – write once, use over and over, even if

its not often

 A part of a large script that will only be used once

 The "Lego block" approach to scripting – develop functions

that can be "plugged together" to form a complete script

with a little "glue"

