
Shell Scripting

1

 A shell can be used in one of two
ways:
◦ A command interpreter, used interactively

◦ A programming language, to write shell
scripts (your own custom commands)

2

 If we have a set of commands that we want to run
on a regular basis, we could write a script

 A script acts as a Linux command, similarly to
binary programs and shell built in commands

 In fact, check out how many scripts are in /bin and
/usr/bin

◦ file /bin/* | grep 'script'

◦ file /usr/bin/* | grep 'script'

 As a system administrator, you can make your job
easier by writing your own custom scripts to help
automate tasks

 Put your scripts in ~/bin, and they behave just like
other commands (if your PATH contains ~/bin)

3

 As we've already discussed, it's good practice to
use a standard header at the top of our scripts

 You could put this in a file that you keep in a
convenient place, and copy that file to be the
beginnings of any new script you create

 Or, copy an existing script that already has the
header

#!/bin/sh -u

PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

umask 022 # use 077 for secure scripts

4

 The interpreter magic, or "shebang":

#!/bin/sh –u

◦ #! need to be the first two characters in the file, because
they form a magic number that tells the kernel this is a
script

◦ #! is followed by the absolute path of the binary program
that kernel will launch to interpret (that is, run) the script,
/bin/sh in our case, and arguments can be supplied, –u in
our case

◦ The –u flag tells the shell to generate an error if the script
tries to make use of a variable that's not set

 That will never happen if the script is well written and tested

 If it does happen, it's better to stop processing than continue
processing garbage.

5

 Set the PATH

 The script will run the standard commands from
the standard locations
PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

 Set the umask

 Any files the script creates should have sane
permissions, and we lean to the secure side
umask 022 # use 077 for secure scripts

6

 We then follow the header with commands
like the ones we type at the shell prompt.

 The stdin, stdout, stderr of the of the
commands inside the script are the stdin,
stdout, stderr of the script as it is run.

 When a command in your script prints
output to stdout, your script will print that
output to its stdout

 When a command in your script reads from
stdin, your script reads from stdin

 7

 Today we cover the following scripting topics

 Running scripts
◦ arguments passed on the command line

◦ ways to invoke a script

 Writing scripts
◦ examining exit status

◦ positional parameters and receiving arguments

◦ variables

◦ interacting with the user

◦ the test program for checking things

◦ control flow with if statements, looping, etc

8

 we supply arguments to our script on the
command line (as with any command args)

 command is executable and in PATH

command arg1 arg2 arg3

 command.sh is executable and in PATH

command.sh arg1 arg2 arg3

 command.sh is executable and not necessarily
in PATH

./command.sh arg1 arg2 arg3

9

 We can also invoke the script interpreter
directly, with its own arguments

 We pass the file containing the script after the
interpreter arguments

 The shebang line mechanism is not being
used in this form

sh –u command.sh arg1 arg2 arg3

sh –u ./command.sh arg1 arg2 arg3

 The arguments seen by our script are

arg1 arg2 arg3

10

command "a b c"

◦ 1 argument

 a b c

command 'a b c"' "d 'e f"

◦ 2 arguments

 a b c" and d 'e f

command 'a ' b '"def"'

◦ 3 arguments

 a and b and "def"

command 'a b' "c 'd e' f"

◦ 2 arguments

 a b and c 'd e' f

11

 Each command finishes with an exit status

 The exit status is left in the variable ? ($?)

 A non-zero exit status normally means
something went wrong (grep is an exception)

 non-zero means "false"

 A exit status of 0 normally means everything
was OK

 0 means "true"

 grep returns 0 if a match occurred, 1 if not,
and 2 if there was an error

12

 On the command line, after running a
command we can use echo $? immediately
after a command runs to check the exit status
of that command

[wen99999@centOS65 ~]$ls

accounts empty rpm test.sh

[wen99999@centOS65 ~]$ echo $?

0

[wen99999@centOS65 ~]$ls nosuchfile

ls: cannot access nosuchfile: No such file or directory

[wen99999@centOS65 ~]$echo $?

2

13

 When our script is running, the command line
arguments are available as Positional
Parameters

 The script accesses these through variables.

 $# holds the number of arguments on the
command line, not counting the command
itself

 $0 is the name of the script itself

 $1 through $9 are the first nine arguments
passed to the script on the command line

 After $9, there's ${10}, ${11}, and so on

14

 $* and $@ both denote all of the arguments
and they mean different things when double
quoted:
◦ "$*" is one word with spaces between the

arguments

◦ "$@" produces a list where each argument is a
separate word

15

16

#!/bin/sh -u

PATH=/bin:/usr/bin ; export PATH

umask 022

Body of script

myvar="howdy doody"

echo "The value of \$myvar is: $myvar" #notice backslash

echo "The number of arguments is: $#"

echo "The command name is $0"

echo "The arguments are: $*"

echo "The first argument is: $1"

echo "The second argument is: $2"

echo "The third argument is: $3"

17

 How to write a command to swap two files?
$ cat swap
 #!/bin/sh
 mv “$1” /tmp/“$1”

 mv “$2” “$1”

 mv /tmp/“$1” “$2”

 $ cat it1
 contents of file1
 $ cat it2
 contents of file2
 $ swap it1 it2
 $ cat it1
 contents of file2
 $ cat it2
 contents of file1
 $

18

 The shift command promotes each command
line argument by one (e.g., the value in $2
moves to $1, $3 moves to $2, etc.)

 $ cat shiftargs
 #!/bin/sh

 echo "The args are 0 = $0, 1 = $1, 2 = $2"

 shift

 echo "The args are 0 = $0, 1 = $1, 2 = $2"

 shift

 echo "The args are 0 = $0, 1 = $1, 2 = $2"

 shift

 $ shiftargs arg1 arg2 arg3
 The args are 0 = shiftarg, 1 = arg1, 2 = arg2
 The args are 0 = shiftarg, 1 = arg2, 2 = arg3
 The args are 0 = shiftarg, 1 = arg3, 2 =

 The previous $1 becomes inaccessible

19

How to write a general version of the

 swap command for two or more files?
 swap f1 f2 f3 ... fn_1 fn

 f1 <--- f2

 f2 <--- f3
 f3 <--- f4
 ...
 fn_1 <--- fn
 fn <--- f1

20

 to get input from the user, we can use the read
builtin

 read returns an exit status of 0 if it successfully
reads input, or non-zero if it reaches EOF

 read with one variable argument reads a line from
stdin into the variable

 Example:

#!/bin/sh -u

read aline #script will stop, wait for user

echo "you entered: $aline"

21

 Use the –p option to read to supply the user
with a prompt

 Example

#!/bin/sh –u

read –p "enter your string:" aline

echo "You entered: $aline"

22

 read var1 puts the line the user types into the
variable var1

 read var1 var2 var3 puts the first word of what
the user types in to var1, the second word into
var2, and the remaining words into var3

#!/bin/sh –u

read var1 var2 var3

echo "First word: $var1"

echo "Second word: $var2"

echo "Remaining words: $var3"

23

 A command or pipeline surrounded by
backquotes causes the shell to:
◦ Run the command/pipeline
◦ Substitute the output of the command/pipeline for

everything inside the quotes

 You can use backquotes anywhere:
 $ whoami

 wen99999

 $ cat test7

 #!/bin/sh

 user=`whoami`

 numusers=`who | wc -l`

 echo "Hi $user! There are $numusers users logged on."

 $./test7

 Hi wen99999! There are 6 users logged on.

24

• In Linux shell scripting, the if statement is used as a form of

decision-making

• The syntax of the if statement follows:

if condition

then

statements

fi

– If 0 (condition is true), then statements following the

“then” execute

26

• Alternate method of if statement uses the else statement

• The syntax:

if condition

then

statements

else

statements

fi

– If 0 (condition is true), then statements following the “then” execute

– If not 0 (condition is not true), then statements following the “else”

execute

28

 The elif statement combines else and if to
construct a nested set of if…then…else
structure.

29

if condition1

then

 statements

elif condition2

then

 statements

 …

else

 statements

fi

30

31

 Numeric relational:
 -eq, -ne, -gt, -ge, -lt, -le

 File operators:
 -f file True if file exists and is a regular file

 -d file True if file exists and is a directory

 -s file True if file exists and has a size > 0

 String operators:
 -z string True if the length of string is zero

 -n string True if the length of string is nonzero

 s1 = s2 True if s1 and s2 are the same

 s1 != s2 True if s1 and s2 are different

 s1 True if s1 is not the null string

 INTEGER1 -eq INTEGER2

 INTEGER1 is equal to INTEGER2

 INTEGER1 -ge INTEGER2

 INTEGER1 is greater than or equal to INTEGER2

 INTEGER1 -gt INTEGER2

 INTEGER1 is greater than INTEGER2

 INTEGER1 -le INTEGER2

 INTEGER1 is less than or equal to INTEGER2

 INTEGER1 -lt INTEGER2

 INTEGER1 is less than INTEGER2

 INTEGER1 -ne INTEGER2

 INTEGER1 is not equal to INTEGER2

32

 -n STRING

 the length of STRING is nonzero

 STRING equivalent to -n STRING

 -z STRING

 the length of STRING is zero

 STRING1 = STRING2

 the strings are equal

 STRING1 != STRING2

 the strings are not equal

33

 These are just a few of them See man test for more:

 -d FILE

 FILE exists and is a directory

 -e FILE

 FILE exists

 -f FILE

 FILE exists and is a regular file

 -r FILE

 FILE exists and read permission is granted

 -w FILE

 FILE exists and write permission is granted

 -x FILE

 FILE exists and execute (or search) permission is granted

34

 A common command to use in the test list of
an if statement is the test command

 man test

 Examples:

 test –e /etc/passwd

 test "this" = "this"

 test 0 –eq 0

 test 0 –ne 1

 test 0 –le 1

35

if test "$1" = "hello"; then

 echo "First arg is hello"

fi

if test "$2" = "hello"; then

 echo "Second arg is hello"

else

 echo "Second arg is not hello"

fi

36

[wen001:centOS65 ~]$ ls -li /usr/bin/test /usr/bin/[

786463 -r-xr-xr-x 1 root root 34716 22 Nov 2013 /usr/bin/[

786517 -r-xr-xr-x 1 root root 31124 22 Nov 2013 /usr/bin/test

 notice that on OSX, [is another name for the test program:

if [-e /etc/passwd]; then

 echo "/etc/passwd exists"

fi

is the same as

if test –e /etc/passwd; then

 echo "/etc/passwd exists"

fi

37

$ [0 –eq 0]

$ echo $?

0

$ ["this" = "that"]

$ echo $?

1

$ ["this" = "this"]

echo $?

0

$ ["this" = "this"] #

forgot the space after [

-bash: [this: command not found

$ ["this" = "this"] #

forgot the space before]

-bash: [: missing ']'

38

 (EXPRESSION)

 EXPRESSION is true

 ! EXPRESSION

 EXPRESSION is false

 EXPRESSION1 -a EXPRESSION2

 both EXPRESSION1 and EXPRESSION2 are true

 EXPRESSION1 -o EXPRESSION2

 either EXPRESSION1 or EXPRESSION2 is true

39

40

 You can combine and negate expressions with:
 -a And

 -o Or

 ! Not

 $ cat test10

 #!/bin/sh

 if [`who | grep gates | wc -l` -ge 1 -a `whoami` != “gates"]

 then

 echo “Bill is loading down the machine!”

else

 echo “All is well!”

fi

$ test10

Bill is loading down the machine!

 test is a program we run just to find out its
exit status

 The arguments to the test command specify
what we're testing

 The spaces around the arguments are
important because test will not separate
arguments for you:
◦ "a" ="a" is the same as a =a which is two args

and test wants three with the second one =

 When trying out test examples, we can run
test and find out the results by looking at $?
immediately after the test command finishes

41

 Alternatively, we can try any example by
putting it in an if-statement:

if [0 –eq 1]; then

 echo that test is true

else

 echo that test is false

fi

42

 Is the value of myvar an empty (zero-length)
string?

[-z "$myvar"]

 Is the value of myvar a non-empty string?

[-n "$myvar"]

or

["$myvar"]

43

 Is the value of myvar equal to the string
"yes"?

["$myvar" = "yes"]

or

["$myvar" = yes]

or

["yes" = "$myvar"]

or

[yes = "$myvar"]

44

 Is the value of myvar NOT equal to the string
"yes"?

["$myvar" != "yes"]

or

[! "$myvar" = yes]

or

["yes" != "$myvar"]

or

[! yes = "$myvar"]

45

 Is the value of myvar a number equal to 4?

["$myvar" -eq "4"]

or

["$myvar" -eq 4]

 Notice that double quotes around a number
just means the shell will not honor special
meaning, if any, of the characters inside

 Digits like 4 have no special meaning in the
first place, so double quotes do nothing

46

The double quotes are necessary to prevent a
syntax error or logic error:

$ a=

$ b=

$ test $a -ne $b && echo hi

hi

$ test "$a" -ne "$b" && echo hi

sh: 10: test: Illegal number:

Note: always double-quote variable expansions.

47

 Is the value of myvar a number NOT equal to
4?

["$myvar" –ne 4]

or

[! 4 -eq "$myvar"]

or

[! "$myvar" –eq 4]

or

["$myvar" -ne 4]

48

 Is 00 a number equal to 0? yes

[00 –eq 0]

 Is 004 a number equal to 4? yes

[004 –eq 4]

 Notice double quotes don't change anything

 Is 00 equal to 0 as strings? no

[00 = 0]

 Is 0004 equal to 4 as strings? no

[0004 = 4]

49

 Is abc a number equal to 0? error

[abc –eq 0] ERROR abc is not a number

 The following is the same as [1] with
stdin redirected from file named 2

[1 < 2]

 Remember we can put redirection anywhere
in the command we want:

ls > myfile

is the same as

> myfile ls

50

 Does /etc/passwd exist?

[-e /etc/passwd]

 Does /etc exist?

[-e /etc]

 Does the file myvar exist?

[-e "$myvar"]

51

 Is /etc/passwd readable?

[-r /etc/passwd]

 Is /etc readable?

[-r /etc]

 Is the value of myvar readable as a file or
directory?

[-r "$myvar"]

 Not readable?

[! –r "$myvar"]

52

 If we need to check whether two files both
exist, we check for each individually, and
combine the tests with –a, meaning AND

[-e /etc/foo –a –e /etc/bar]

 Given a number in myvar we can check
whether it's greater than or equal to 4 AND
less than or equal to 10

["$myvar" –ge 4 –a "$myvar" –le 10]

53

 If we need to check whether at least one of
two files exists, we check for each
individually, and combine the tests with –o,
meaning OR

[-e /etc/foo –o –e /etc/bar]

 Given a number in myvar we can check
whether it's greater than or equal to 4 OR less
than or equal to 10

["$myvar" –ge 4 –o "$myvar" –le 10]

54

 We can use ! to test if something is NOT true

 Test whether /etc/passwd is NOT executable

[! –e /etc/passwd]

55

 Just like arithmetic, we use parenthesis to
control the order of operations

 Remember that (and) are special to the shell
so they need to be escaped or quoted from
the shell

 Check whether file1 or file2 exists, and
also check whether 1 is less than 2:

[\(-e file1 –o –e file2 \) –a 1 –lt 2]

 Without parentheses we'd be testing whether file1
exists, or whether file2 exists and 1 is less than 2

56

 Like regular expressions, to get comfortable
with the order of operations, we can borrow
our comfort with arithmetic expressions

57

test
operation

arithmetic alalog comment

() () \(and \) or '(' and ')' to protect from
shell

! - That's the arithmetic unary "oposite
of" operator, as in -4 or –(2+2)

-a multiplication

-o addition

#!/bin/sh -u

PATH=/bin:/usr/bin ; export PATH

umask 022

echo "You passed $# arguments, and those are:$*:"

if [$# -eq 0]; then

 echo "You didn't give me much to work with"

else

 echo -n "Here are the arguments capitalized:"

 echo "$*" | tr '[[:lower:]]' '[[:upper:]]'

fi

58

 Often the purpose of a script is to produce
useful output, like filenames, or maybe a list
of student numbers
◦ this output should go to stdout

◦ it may be redirected to a file for storage

◦ we don't want prompts and error messages in there

 There may also be other output, like warning
messages, error messages, or prompts for
the user, for example
◦ this output should go to stderr

◦ we don't want this type of output to be inseparable
from the real goods the script produces

59

 Here is an example of a good error message
echo 1>&2 "$0: Expecting 1 argument; found $# ($*)"

 Why is it good?
◦ It redirects the message to stderr: 1>&2

◦ It gives the user all the information they may need
to see what is wrong

 $0 is the name used to invoke the script (remember,
files can have more than one name so it shouldn't be
hard-coded into the script)

 $# is the number of arguments the user passed

 $* shows the actual arguments, put in parenthesis so
the user can see spaces, etc.

 60

#!/bin/sh –u

PATH=/bin:/usr/bin ; export PATH

umask 022

if [$# -ne 1]; then

 echo 1>&2 "$0: Expecting 1 argument; found $# ($*)"

else

 read -p "Enter your string:" userString

 if ["$userString" = "$1"]; then

 echo "The string you entered is the same as the argument"

 else

 echo "The string you entered is not the same as the argument"

 fi

fi

61

