
More Scripting Techniques
Scripting Process

Example Script

1

 arguments to scripts

 positional parameters

 input using read

 exit status

 test program, also known as [

 if statements

 error messages

2

 case statement

 while loops

 until loops

 for loops

 why write scripts in the first place?

 lists

 set and shift

 integer arithmetic

 scripting process in general

3

• Another decision structure

• Use when a decision is based upon multiple inputs

• Syntax:

case word in

Pattern1) statements;;

Pattern2) statements;;

esac

• The word is a variable that matches one of the patterns

• Can use * to match all patterns, ? to match a single character
or […] for a range.

read

case

–p "Do you want to see all files?"

$yesno in

y|Y)

yesno

echo "Displaying all files … "

ls –a

;;

n|N)

echo "Displaying

ls

;;

*) echo

all file except hidden… "

"Invalid response!" ;;

esac

case statement Example2

childprice=5 #age 0 to 12

read -p "Enter

case $age in

your age: " age

[6-9][0-9]) echo " price is senior

*) echo "Invalid input" ;;

price of " $seniorprice ;;

esac

adultprice=10 #age 13 to 59

seniorprice=6 #age 60 to 99

[1-9]|[1][0-2]) echo " price is child's price of " $childprice ;;

[1][3-9]|[2-5][0-9]) echo " price is adult price of " $adultprice ;;

while condition; do

 # this code runs over and over

 # until command has

 # non-zero exit status

done

7

while read -p "enter a word: " word; do

 echo "You entered: $word"

done

8

stop=N

while [“$stop” != “y”]

do

 who

 ls

 read –p “Do you want to stop? (y/n)” stop

done

echo “Stopping …”

• The until syntax in the shell:

until condition

do

statements

done

• If condition is false Do statements execute.

• If condition is true loop terminates.

stop=n

until [“$stop” = “y”]

do

 who

 ls

 read –p “Do you want to stop? (y/n)” stop

done

echo “Stopping …”

• The for statement syntax in bash shell takes two forms:

– Word list form:

for variable [in list]

do

statements

Done

if [in list] is omitted, the positional parameters are used

– Arithmetic expression form:

for ((variable=starting-value; variable operator
value; change value))

do

statements

done

for f in hello how are you today; do

 echo "Operating on $f"

done

13

for ((num=1;

do

num <= 10; num++))

((power=$num ** 2))

echo $num

done

“to the second power is” $power

1. use when an alias gets too complex, impossible

◦ aliases cannot use arguments in their replacement text

2. make new, specialized commands

◦ look at /bin/gunzip and /bin/zcat

3. automate long and/or complex tasks

◦ example, actually part of the boot system: /etc/rc.d/rc

◦ backup scripts, bulk user creation, other sysadmin

tasks

◦ as we'll see, scripts are the contents of the "regularly

scheduled tasks" directories:

 /etc/cron.{hourly,daily,monthly}/

15

 In the general form of the control
statements(examples: if, for, while) in the
bash man page we will see the notion of a list

◦ for name [in word...] ; do list ; done

◦ if list1; then list2; fi

 From the man page for bash:
◦ A list is a sequence of one or more pipelines

separated by one of the operators ;, &, &&, or
||, and optionally terminated by one of ;, &, or
<newline>.

16

 Hey, we already know what most of those
mean:
◦ ls –al | more # there's that | operator

 | means redirect output of one command into another

◦ ls –al > foo & # there's that & operator

 & means run the command in the background

 proceed immediately with any command after the &

◦ ls –al ; head myfile # there's the ; operator

 ; means run one command after another

 wait for the first command to finish in the foreground, then
when it's finished, proceed with any command after the ;

17

 The new ones are
◦ command1 && command2

◦ command1 || command2

18

 && means AND

 This means stop at the first command that
has non-zero exit status

 command1 && command2 is the same as
◦ if command1; then command2; fi

◦ example, suppose we want to run process.sh on a
file, and then remove it:
process.sh /root/testfile && rm –f /root/testfile

 if any thing goes wrong with process.sh (non-zero exit
status), the file is NOT removed

 if the process.sh /root/testfile command goes well
(has zero exit status), THEN the file will be removed

19

 || means OR

 This means stop at the first command that
returns a zero exit status

 command1 || command2 is the same as
◦ if command1; then : ; else command2 fi

 : is a command that does nothing!

◦ example, suppose we are writing a script that needs
to process a file, and if that doesn't go well, then
the script should terminate abnormally:

 process /root/testfile || exit 1

 if anything goes wrong with process, the script exits

20

 Suppose you might qualify for a scholarship:

 Those who qualify are:
◦ born on the moon, and something

 if we weren't born on the moon, we don't need to know
what the <something> is; we already know we don't
qualify

◦ Algonquin student and something
 in this case, because we are an Algonquin student, we

do need to know what something is to know whether
we qualify

 or in other words
◦ born on the moon && something

◦ Algonquin student && something

21

 As soon as we encounter "true", we can stop

 You qualify for a $1000 rebate under the
following conditions:
◦ born on the moon, or ??

◦ Algonquin student, or ??

 In the first case, we need to know what the
exit status of the ?? is, we need to run the ??
command

 In the second case, we can stop before
running the ?? command

22

 && and || are used with commands that tend
to get things done
◦ to graduate, you

 complete first year && complete second year

◦ complete first year is a "command" that gets things
done: you learn the first-year material

◦ if you fail first year, you don't attempt second year

 -a and –o are used in test, and don't do
things, just affect the exit status of test
◦ you are a rich Canadian if

 you are Canadian –a you are rich

◦ checking whether or not you're Canadian doesn't
get things done – but it does establish a truth value

23

 In our script we can manipulate the positional
parameters

 set command to set them

 shift command to process them in turn

24

 We can set the positional parameters with
◦ set – oneword secondword -e etc

 This will set
◦ $1 to oneword

◦ $2 to secondword

◦ $3 to -e

◦ $4 to etc

 Set does take options (see bash manpage)
and that first – tells set there are no more
options (-e in this case is not an option)

 25

 shift

 moves all the arguments to the left

 shift n moves all the arguments to the left by
n

 shift
◦ $# is decreased by 1

◦ the pre-shift $1 is lost

◦ $1 becomes what was in $2

◦ $2 becomes what was in $3

◦ $3 becomes what was in $4

 etc

26

 The expr command is a common and
traditional way to evaluate arithmetic
expressions

 The arguments to the expr command
constitute the arithmetic expression

27

 examples of using expr command:

a=`expr 3 + 4` # a gets set to 7

a=`expr 3 – 4` # a gets set to -1

a=`expr 3 * 4` # a gets set to 12

a=`expr 13 / 5` # integer division: 2

a=`expr 13 % 5` # remainder: 3

 increment the integer in variable a

a=`expr $a + 1` # a gets set to a+1

28

 let is not the preferred way to do arithmetic in this
course

 let arg [arg...]
◦ each arg is an arithmetic expression to evaluate

◦ see ARITHMETIC EVALUATION of bash man page

◦ shell variables are allowed with or without $

◦ arithmetic expressions can involve assignment of values to
variables, where "=" is the basic assignment operator

 examples:
let a=1

echo “$a”

let a=a+1

echo “$a”

29

 let seems great, why not use it?
◦ because it's not as portable as the alternatives

◦ "portable" means you can run your script
unmodified on other systems, maybe running
/bin/dash instead of /bin/bash, and it will work
just as well

 expr is "standard" and works everywhere

 $((arith)) is what you would use if you
don't want to use expr (and it's faster than
expr)
◦ x=0

◦ x=$((x + 1))

◦ x=$(($x + 1))

30

 What's the difference between
((expression)) and $((expression))

 $((expression)) is an expansion like a
variable expansion, where $((expression))
is replaced by the results of the evaluated
expression

 ((expression)) is a compound command
equivalent to let expression

31

 You can put $((expression)) where you can
put variable expansion like $myvar:

a=0

while ["$a" –lt 10]; do

 echo username: "user$((a+1))"

 a=$((a+1))

done

32

 You can use ((expression)) wherever you
would use a command:

((a=0)) # set a to 0

((a=a+1)) # increment a to 1

a=((a+1)) # syntax error

a="((a+1))" # set a to literal string "((a+1))"

a="ls" # set a to literal string "ls"

 In these last two, there is what looks like a
command, ls and ((a+1)), but no command
is run

33

 Analyze and understand the problem

 Write pseudocode to document and
understand the problem

 Start with a small number of lines in the
script, and get that working properly

 Add a small amount to the script, and get it
working properly again

 repeat previous step until script is complete

 run final tests

34

 Example from Sobell, A Practical Guide to
Linux, Commands, Editors, and Shell Programming, 2nd
Ed, Chapter 10

 lnks script:
◦ Given a filename, find hard links to that file.

◦ Search for hard links under a certain directory if one
is given; otherwise, search for hard links in the
current working directory and its subdirectories.

35

 Generally, for any problem, we need to deal
with the following three phases

1. Input

2. Processing

3. Output

36

 Input is the information/data that a script
needs before it can do its job

 What is the information?
◦ name of a file

◦ name of a directory

 How does our script get its information?
◦ the description says "given a filename", and

"directory if one is given"

◦ this would imply that those items would be
command line arguments

◦ if the description said "ask for", then the script
would prompt for the information after its running

37

 What's the data that will be processed?

 What work will our script do?
◦ the script will look for hard links in the file system

◦ therefore, the data is the contents of the file system

◦ our script will look for hard links in the file system

◦ our script will "read in" this data by running
commands that access the file system (ls, find,
etc)

38

 OK, we now understand the problem
◦ take a file name and an optional directory location

as arguments on the command line, and use Linux
commands to find hard links at that the specified
directory (or the current directory if none was
specified) in the file system

 Simple, let's just tell the computer to do that!

39

 Our scripts are like little robots that will do
exactly what we tell them to do.

 Imagine you move into a new neighborhood
and you tell your domestic robot to go to the
corner store and bring back a turkey
sandwich and a coke

 The robot comes back with a pound of butter
and a can of crab juice

 You aren't happy, but whose fault is it?
◦ the store had ham, but no turkey, and pepsi, but no

coke

◦ again, whose fault is it that you aren't happy?

40

 If they don't have coke, then get pepsi, and if
they don't have pepsi, then nothing, etc, etc

 When we write our scripts, we end up
happiest when we specify absolutely every
single detail of every possible circumstance

 We need to make a conscious effort to predict
all possible ways things can go wrong

 It's a common script beginner's mistake to
think only about everything going right

 The major work is dealing properly with what
goes wrong

41

 What if no directory name is given on command
line?
◦ use the current directory (hey, this is easy!)

 What if no file name is given on the command line?
◦ print an error message (but then what?)

 What if the given file name is a directory and not a
regular file?
◦ print an error message and exit

 What if too many names are given?

 What if no hard links are found?

 What if there are no hard links to the file?

 What if the directory is unreadable? Doesn't exist?

 The more "what ifs" our script can handle, the
better...

42

 Speaking of "what if"s...

 A Test Plan is a document that describes a
process for verifying that the script does the
right thing every time no matter what

 In simple cases it can be a list of tests, which
would have this form:
◦ test name

◦ short description of what's being tested

◦ command (and/or instructions) for running the test

◦ expected result and/or output from running the
test

◦ the actual result (filled in when a test plan is
executed)

43

 As we have seen, the process of
understanding the problem and generating a
test plan both involve "what if" analysis, and
therefore can proceed at the same time

 The plan for testing the final result begins to
form early (maybe even before the problem is
fully understood!)

44

 Start small and get that working, and then add to it

 Let's start with just the "input" phase:

#!/bin/sh –u

PATH=/bin:/usr/bin ; export PATH

umask 022

identify links to a file

Usage: $0 file [directory]

if [$# -eq 0 –o $# -gt 2]; then

 echo 1>&2 "$0: Expecting one or two arguments,

found $# ($*)"

 echo 1>&2 "Usage $0 file [directory]"

 exit 1

fi

 Continue on real Linux system....

45

 After finishing the Input stage, we have our
file name and directory under which to search

 How do we find the hard links?

 Think about hard links...
◦ If we know the inode of the file, then all hard links

to the same file will have the same inode

◦ We can get the inode of the file using ls

◦ We can look for files with the same inode using
find

46

 Getting the inode number into a variable
named inode so we can refer to it as $inode

 Consider the output of ls –i

 Assuming the filename is in $file, Each of
the following will do the trick

 remember backticks, `command` is
command substitution, same as $(command)
◦ inode=`ls -i "$file" | awk '{print $1}'`

OR

◦ set - `ls –i "$file"`

◦ inode=$1

OR

◦ inode=$(ls –i "$file" | cut –d' ' –f1)

47

 Now that we have the inode, how do we find
other files with that inode?

 This literally has the find command written
all over it! (man find)

find "$directory" –inum "$inode" -print

48

 How does our script deliver its results?

 Should the names be put in a special file
somewhere?

 It depends.

 In keeping with the Unix filter/pipeline
philosophy, lets have our script print the
names on the standard output

 Hey, find is already printing the names on
its standard output

 Recall that the standard output of the script is
the same as the standard output of the
commands inside the script

49

 Notice that errors and other messages should
be printed on standard error

 The "goods" (the actual filenames we were
looking for) are printed on standard output

 That's how we like it, because now we can
redirect standard output to a file, or run it
through grep or any other utility, and we
won't have those messages mixed in

 All of those messages will go to standard
error, which we can also redirect elsewhere if
we want

50

 Indenting: look at how the if statements are
indented:

if list; then

 ls –l # indented 4 spaces

fi

 The same would be true of other control
statements:

while list; do

 #indent 4 spaces

done

51

 Variables in our scripts have lower case
names

 Environment variables are indicated by their
UPPER CASE names: SHELL, VISUAL, etc

 It's usually best to put variable expansions
inside double quotes, to protect any special
characters that might be inside the variable:

echo "$somevar"
◦ if somevar contained the * character, the double

quotes stop the shell from globbing it

52

 The following all mean different things:
◦ run the myvar command with two arguments, = and
value:

myvar = value

◦ set the myvar variable to have value "", then run the
value command with that variable setting in effect

myvar= value

◦ run the myvar command with one argument, namely
=value:

myvar =value

◦ set the variable myvar to have value value

myvar=value

53

 -v option for bash/sh
◦ sh –v myscript

◦ shell will print each line as its read

◦ loop statements are printed once

 -x option for bash/sh
◦ sh –x myscript

◦ shell will display $PS4 prompt and the expanded
command before executing it

◦ each loop iteration is shown individually

54

 test plan creation involves identifying the
"Boundary Conditions"

 The "typical case" or "normal case" is a
necessary test, and all such cases are
considered equivalent (test one and you've
tested them all)

 Boundary cases are all interesting:
◦ present or missing

◦ too small, just big enough, typical, almost too big,
too big

◦ MINIMUM, ... -1,0,1,... MAXIMUM

55

 Suppose you're looking for 8.3 filenames,
where the "main part" is up to 8 characters,
and the extension is exactly 3 characters
◦ main part of filename

 boundaries

 0, 1, 8, 9 characters

 typical case (only one needed)

 2,3,4,5,6,7

◦ extension

 boundaries

 0,3,4

 typical case (same as the boundary) 3

56

