
Regular Expressions 
 

1 



 Our standard script header 

 Matching patterns 

 POSIX character classes 

 Regular Expressions 

 Character classes 

 Some Regular Expression gotchas 

 Regular Expression Resources 

 Assignment 3 on Regular Expressions 

 

 

 

 

 

 

 

 

2 



#!/bin/sh -u 

PATH=/bin:/usr/bin ; export PATH   # add /sbin and /usr/sbin if needed 

umask 022                          # use 077 for secure scripts 

3 



 There are two different pattern matching 
facilities that we use in Unix/Linux: 

1. filename globbing patterns match existing 
pathnames in the current filesystem only 

2. regular expressions match substrings in 
arbitrary input text 

 

 We need to pay close attention to which of 
the two situations we're in, because some of 
the same special characters have different 
meanings! 

4 



 Globbing is used for 
◦ globbing patterns in command lines 

◦ patterns used with the find command 

 shell command line (the shell will match the 
patterns against the file system): 
◦ ls *.txt 

◦ echo ?????.txt 

◦ vi [ab]*.txt 

 find command (we double quote the pattern so 
the find command sees the pattern, not the shell): 
◦ find ~ -name "*.txt" 

◦ in this case, the find command matches the pattern against 
the file system 

 

5 



 IMPORTANT: regular expressions use some of 
the same special characters as filename 
matching on the previous slide but they mean 
different things! 

 Regular expressions can be used in awk, 
grep, vi, sed, more, less, and many 

email server applications. 

 

6 



 Before we look at regular expressions, let's 
take a look at some expressions you're 
already comfortable with: algebraic 
expressions 

 Larger algebraic expressions are formed by 
putting smaller expressions together 

7 



Expression Meaning Comment 

a a a simple expression 

b b another simple expression 

ab a x b  ab is a larger expression formed from 
two smaller ones 
concatenating two expressions 
together means to multiply them 

b2 b x b we might have represented this with 
b^2, using ^ as an exponentiation 
operator 

ab2 a x (b x b) why not (a x b) x (a x b)? 
 

(ab)2 (a x b) x (a x b) 

8 



 [:alnum:] alphanumeric characters 

 [:alpha:] alphabetic characters 

 [:blank:] space, tab 

 [:cntrl:] control characters 

 [:digit:] digit characters 

 [:lower:] lower case alphabetic characters 

 [:print:] visible characters, plus [:space:] 

 [:punct:] Punctuation characters and other symbols 
◦ !"#$%&'()*+,\-./:;<=>?@[]^_`{|}~ 

 [:space:] White space (space, tab) 

 [:upper:] upper case alphabetic characters 

 [:xdigit:] Hexadecimal digits 

 [:graph:] Visible characters (anything except spaces 
and control characters) 

 9 



Expression Meaning Comment 

a match single 'a' a simple expression 

b match single 'b' another simple expression 

ab match strings 
consisting of single 
'a' followed by 
single 'b' 

"ab" is a larger expression formed 
from two smaller ones 
concatenating two regular 
expressions together means 
"followed immediately by" and we'll 
say "followed by" 

b* match zero or 
more 'b' characters 

a big difference in meaning from the 
'*' in globbing!  This is the regular 
expression repetition operator. 

ab* 'a' followed by zero 
or more 'b' 
characters 

why not repeating ('a' followed by 'b'), 
zero or more times? Hint: think of 
"ab2" in algebra. 

\(ab\)* ('a' followed by 'b'), 
zero or more times 

We can use parenthesis, but in Basic 
Regular Expressions, we use \( and \) 

10 



Expression Matches Ex. Example 
Matches 

Comment 

non-special 
character 

itself x "x" like globbing 

one 
expression 
followed by 
another 

first followed 
by second 

xy "xy" like globbing 

. any single 
character 

. "x" or "y" 
or "!" or "." 
or "*" 
…etc 

like the '?' in globbing 

expression 
followed by 
* 

zero or more 
matches of the 
expression 

x* "" or "x" or 
"xx" or 
"xxx" 
…etc 

NOT like the * in 
globbing, although .* 
behaves like * in 
globbing 

character 
classes 

a SINGLE 
character from 
the list 

[abc] "a" or "b" 
or "c" 

like globbing 

11 



Expression Matches Ex. Example 
Matches 

Comment 

^ beginning of a 
line of text 

^x "x" if it’s 
the first 
character 
on the line 

anchors the match to 
the beginning of a 
line 

$ end of a line of 
text 

x$ "x" if it's 
the last 
character 
on the line 

anchors the match to 
the end of a line 

^ (but not 
first) 

^ a^b "a^b" ^ has no special 
meaning unless its 
first 

$ (but not 
last) 

$ a$b "a$b" $ has no special 
meaning unless its 
last 

12 



Expression Matches Ex. Example 
Matches 

Comment 

special 
character 
inside [ and 
] 

as if the 
character is 
not special 

[\] "\" conditions: ']' must 
be first, '^' must not 
be first, and '-' must 
be last  

\ followed 
by a special 
character 

that character 
with its special 
meaning 
removed 

\. "." like globbing 

\ followed 
by non-
special 
character 

the non-
special 
character 

\a "a" \ before a non-
special character is 
ignored 

13 



 testing regular expressons with grep on stdin 
◦ run grep --color=auto 'expr'  

◦ use single quotes to protect your expr from the 
shell 

◦ grep will wait for you to repeatedly enter your test 
strings (type ^D to finish) 

◦ grep will print any string that matches your expr, 
so each matched string will appear twice (once 
when you type it, and once when grep prints it) 

◦ the part of the string that matched will be colored 

◦ unmatched strings will appear only once where you 
typed them 

14 



 For now, we'll use grep on the command line 

 We will get into the habit of putting our regex 
in single quotes on the command line to 
protect the regex from the shell 

 Special characters for basic regular 
expressions: \, [, ], ., *, ^, $ 

 can match single quote by using double 
quotes, as in : grep "I said, \"don't\"" 

 alternatively: grep 'I said, "don'\''t"' 

 

 

15 



 Appendix A in the Sobell Text book is a 
source of information 

 You can read under REGULAR EXPRESSIONS 
in the man page for the grep command - this 
tells you what you need to know 

 The grep man page is normally available on 
Unix systems, so you can use it to refresh 
your memory, even years from now 

16 



 examples (try these) 
◦ grep ‘ab’         #any string with a followed by b 

◦ grep ‘aa*b’     #one or more a followed by b 

◦ grep ‘a..*b’    #a, then one or more anything, then b 

◦ grep ‘a.*b’     #a then zero or more anything, then b 

◦ grep ‘a.b’      # a then exactly one anything, then b 

◦ grep ‘^a’       # a must be the first character 

◦ grep ‘^a.*b$’   # a must be first, b must be last 

 Try other examples: have fun! 

 

17 



 Character classes are lists of characters inside 
square brackets 

 The work the same in regex as they do in 
globbing 

 Character class expressions always match 
EXACTLY ONE character (unless they are 
repeated by appending '*') 

 [azh] matches "a" or "h" or "z" 

18 



 Non-special characters inside the square 
brackets form a set (order doesn't matter, 
and repeats don’t affect the meaning): 
◦ [azh] and [zha] and [aazh] are all equivalent 

 Special characters lose their meaning when 
inside square brackets, but watch out for ^, 
], and – which do have special meaning 
inside square brackets, depending on where 
they occur 

19 



 ^ inside square brackets makes the character 
class expression mean "any single character 
UNLESS it's one of these" 

 [^azh] means "any single character that is 
NOT a, z, or h" 

 ^ has its special "inside square brackets" 
meaning only if it is the first character inside 
the square brackets 

 [a^zh] means a, h, z, or ^ 

 Remember, leading ^ outside of square 
brackets has special meaning "match 
beginning of line" 

20 



 ] can be placed inside square brackets but it 
has to be first (or second if ^ is first) 

 []azh] means ], a, h, or z 

 [^]azh] means "any single character that is 
NOT ], a, h, or z" 

 Attempting to put ]inside square brackets in 
any other position is a syntax error: 
◦ [ab]d] is a failed attempt at [ab][d] 

◦ [] is a failed attempt at []] 

21 



 - inside square brackets represents a range 
of characters, unless it is first or last 

 [az-] means a, z, or - 

 [a-z] means any one character between a 
and z inclusive (but what does that mean?) 

 "Between a and z inclusive" used to mean 
something, because there was only one locale 

 Now that there is more than one locale, the 
meaning of "between a and z inclusive" is 
ambiguous because it means different things 
in different locales 

 

22 



 i18n basically means "support for more than one locale" 

 Not all computer users use the same alphabet 

 When we write a shell script, we want it to handle text and filenames 
properly for the user, no matter what language they use 

 In the beginning, there was ASCII, a 7 bit code of 128 characters 

 Now there’s Unicode, a table that is meant to assign an integer to 
every character in the world 

 UTF-8 is an implementation of that table, encoding the 7-bit ASCII 
characters in a single byte with high order bit of 0 

 The 128 single-byte UTF-8 characters are the same as true ASCII 
bytes (both have a high order bit of 0) 

 UTF-8 characters that are not ASCII occupy more than one byte, and 
these give us our accented characters, non-Latin characters, etc 

 Locale settings determine how characters are interpreted and 
treated, whether as ASCII or UTF-8, their ordering, and so on 

 

 

23 



 A locale is the definition of the subset of a user's environment that 
depends on language and cultural conventions.  

 For example, in a French locale, some accented characters qualify as 
'lower case alphabetic", but in the old "C" locale, ASCII a-z contains 
no accented characters. 

 Locale is made up from one or more categories. Each category is 
identified by its name and controls specific aspects of the behavior 
of components of the system. 

 Category names correspond to the following environment variable 
names (the first three especially can affect the behavior of our shell 
scripts): 
◦ LC_ALL: Overrides any individual setting of the below categories. 

◦ LC_CTYPE: Character classification and case conversion. 

◦ LC_COLLATE: Collation order. 

◦ LC_MONETARY: Monetary formatting. 

◦ LC_NUMERIC: Numeric, non-monetary formatting. 

◦ LC_TIME: Date and time formats. 

◦ LC_MESSAGES: Formats of informative and diagnostic messages and interactive 
responses. 

 

24 



$ export LC_ALL=C 

$ echo * 

A B C Z a b c z 

$ echo [a-z]* 

a b c z 

$ export LC_ALL=en_CA.UTF-8 

$ echo * 

A a B b C c Z z 

$ echo [a-z]* 

a B b C c Z z 

$ 

25 



 Do not use ranges in bracket expressions 

 We now use special symbols to represent the 
sets of characters that we used to represent 
with ranges. 

 These all start with [: and end with :] 

 For example lower case alphabetic characters 
are represented by the symbol [:lower:] 
◦ [[:lower:]] matches any lower case alpha char 

◦ [AZ[:lower:]12] matches A, Z, 1, 2, or any 
lower case alpha char 

26 



 [:alnum:] alphanumeric characters 

 [:alpha:] alphabetic characters 

 [:blank:] space, tab 

 [:cntrl:] control characters 

 [:digit:] digit characters 

 [:lower:] lower case alphabetic characters 

 [:print:] visible characters, plus [:space:] 

 [:punct:] Punctuation characters and other symbols 
◦ !"#$%&'()*+,\-./:;<=>?@[]^_`{|}~ 

 [:space:] White space (space, tab) 

 [:upper:] upper case alphabetic characters 

 [:xdigit:] Hexadecimal digits 

 [:graph:] Visible characters (anything except spaces 
and control characters) 

 27 



 POSIX character classes go inside […] 

 examples 
◦ [[:alnum:]] matches any alphanumeric character 

◦ [[:alnum:]}] matches one alphanumeric or } 

◦ [[:alpha:][:cntrl:]] matches one alphabetic or 
control character 

 Take NOTE! 
◦ [:alnum:] matches one of a,:,l,n,u,m (but grep on 

the CLS will give an error by default) 

◦ [abc[:digit:]] matches one of a,b,c, or a digit 

 

28 



 The exact content of each character class 
depends on the local language. 

 Only for plain ASCII is it true that "letters" 
means English a-z and A-Z. 

 Other languages have other "letters", e.g. é, ç, 
etc. 

 When we use the POSIX character classes, we 
are specifying the correct set of characters for 
the local language as per the POSIX 
description 

29 



 Remember any match will be a long as 
possible 
◦ aa* matches the aaa in xaaax just once, even 

though you might think there are three smaller 
matches in a row 

 Unix/Linux regex processing is line based 
◦ our input strings are processed line by line 

◦ newlines are not considered part of our input string 

◦ we have ^ and $ to control matching relative to 
newlines 

 

 

 

 

 

 

 

30 



 expressions that match zero length strings 
◦ remember that the repetition operator * means 

"zero or more" 

◦ any expression consisting of zero or more of 
anything can also match zero 

◦ For example, x*, "meaning zero or more x 
characters", will match ANY line, up to n+1 times, 
where n is the number of (non-x) characters on that 
line, because there are zero x characters before and 
after every non-x character 

◦ grep and regexpal.com cannot highlight matches 
of zero characters, but the matches are there! 

 
31 



 quoting (don't let the shell change regex 
before grep sees the regex) 

$ mkdir empty 

$ cd empty 

$ grep [[:upper:]] /etc/passwd | wc 

     503    2009   39530 

$ touch Z 

$ grep [[:upper:]] /etc/passwd | wc 

       7      29     562 

$ touch A 

$ grep [[:upper:]] /etc/passwd | wc 

      87     343    7841 

$ chmod 000 Z 

$ grep [[:upper:]] /etc/passwd | wc 

grep: Z: Permission denied 

      87     343    7841 

 

32 



 To explain the previous slide, use echo to 
print out the grep command you are actually 
running: 

 
$ echo grep [[:upper:]] /etc/passwd 

grep A Z /etc/passwd 

 

$ rm ? 

 

$ echo grep [[:upper:]] /etc/passwd 

grep [[:upper:]] /etc/passwd 

 

33 



 we will not use range expressions 

 we'll standardize on en_CA.UTF-8 so that the 
checking script for assignments always sees 
things formatted the same way 

34 



 http://www.regular-
expressions.info/tutorial.html 

 http://lynda.com 

 http://regexpal.com 

 http://teaching.idallen.com/cst8177/14w/no
tes/000_character_sets.html 

 http://www.regular-
expressions.info/posixbrackets.html 

 

 

35 

http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://lynda.com
http://regexpal.com/
http://regexpal.com/
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html


 Some students are already comfortable with 
the command line 

 For those who aren't, yet another tutorial 
source that might help is Lynda.com 

 All Algonquin students have free access to 
Lynda.com 

 Unix for Mac OSX users: 
http://www.lynda.com/Mac-OS-X-10-6-tutorials/Unix-for-Mac-OS-X-
Users/78546-2.html 

36 



 Lynda.com has a course on regular expressions 

 The problem is that it covers our material as well as some 
more advanced topics that we won't cover 

 It is a good presentation, and the following chapters should 
have minimal references to the "too advanced" material 
◦ Chapter 2 Characters 

◦ Chapter 3 Character Sets 

◦ Chapter 4 Repetition Expressions 

 On campus use this URL: 

http://www.lynda.com/Regular-Expressions-tutorials/Using-Regular-
Expressions/85870-2.html 

 Off campus use this URL: 

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-
tutorials/Using-Regular-Expressions/85870-2.html 
 

37 

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html


 Assignment 3 asks you to write shell scripts 

 These are simple scripts: just the script header, 
and a grep command where coming up with the 
regex is your work to be done 

 You don't need extended regular expression 
functionality, and the checking script will disallow 
it 

 

38 


