CST8177 - Linux |l

Regular Expressions

Topics

Our standard script header

Matching patterns

POSIX character classes

Regular Expressions

» Character classes

» Some Regular Expression gotchas

» Regular Expression Resources

» Assignment 3 on Regular Expressions

vV vV vV Vv

Standard script header

#!/bin/sh -u
PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

umask 022 # use 077 for secure scripts

Matching Patterns

» There are two different pattern matching
facilities that we use in Unix/Linux:

1. filename globbing patterns match existing
pathnames in the current filesystem only

2. regular expressions match substrings in
arbitrary input text

» We need to pay close attention to which of
the two situations we're in, because some of

the same special characters have different
meanings!

File Name Globbing

» Globbing is used for
> globbing patterns in command lines
> patterns used with the find command

» shell command line (the shell will match the
patterns against the file system):

o 1s *.txt
o echo ?27?272727.txt

° vl [ab]*.txt

» £ind command (we double quote the pattern so
the £ind command sees the pattern, not the shell):
° find ~ -name "*.txt"

> in this case, the find command matches the pattern against
the file system

Regular Expressions

» IMPORTANT: regular expressions use some of
the same special characters as filename
matching on the previous slide but they mean
different things!

» Regular expressions can be used in awk,
grep, vi, sed, more, less, and many
email server applications.

Regular Expressions

» Before we look at regular expressions, let's
take a look at some expressions you're
already comfortable with: algebraic
expressions

» Larger algebraic expressions are formed by
putting smaller expressions together

Algebraic Expressions
Expression | Meaning | Comment

a a a simple expression
b b another simple expression
ab axb ab is a larger expression formed from

two smaller ones
concatenating two expressions
together means to multiply them

b2 bxb we might have represented this with
bA2, using A as an exponentiation
operator

ab? ax(bxb) why not (a x b) x (a x b)?

(ab)? (@ax b)x(axb)

POSIX character classes (LANG=C)

v Vv VvV VvV VvV vV VvV v

4
4
>
4

:alnum:] alphanumeric characters

:alpha:] alphabetic characters

:blank:] space, tab

:cntrl:] control characters

:digit:] digit characters

:lower:] lower case alphabetic characters

:print:] visible characters, plus [:space:]

punct:] Punctuation characters and other symbols
o I"#$%&')*+,\-./;<=>?@[]A_ {|}~

:space:
upper:]
xdigit:]
:graph:]
mekcontrol characters)

White space (space, tab)

upper case alphabetic characters
Hexadecimal digits

Visible characters (anything except spaces

Basic Regular Expressions
Expression | Meaning | Comment

a match single 'a’' a simple expression

b match single 'b’ another simple expression

ab match strings "ab" is a larger expression formed
consisting of single from two smaller ones
'a’' followed by concatenating two regular
single 'b' expressions together means

"followed immediately by" and we'll
say "followed by"

b* match zero or a big difference in meaning from the
more 'b' characters '*'in globbing! This is the regular
expression repetition operator.
ab* 'a’ followed by zero why not repeating (‘a' followed by 'b'),
or more 'b’ zero or more times? Hint: think of
characters "ab?" in algebra.
\(ab\)* ('a’' followed by 'b"), We can use parenthesis, but in Basic

zero or more times Regular Expressions, we use \(and \)

10

Basic Regular Expressions (con't)

Expression | Matches Example Comment
Matches

non-special itself "x" like globbing
character
one first followed Xy "xy" like globbing
expression by second
followed by
another
any single : "x" or "y" like the 7' in globbing
character or "I"or"."
Or ll*ll
...etc
expression zero or more X* "or "x" or NOT like the * in
followed by matches of the "xx" or globbing, although .*
* expression "xxx" behaves like * in
..etc globbing
character a SINGLE [abc] "a" or "b" like globbing
classes character from or "c"
the list

i —_ i

Basic Regular Expressions (con't)

Expression | Matches Example Comment
Matches

beginning of a Ax "x"if it’s
line of text the first
character
on the line
$ end of a line of x$ "x" if it's
text the last
character
on the line
A (but not A aAb "aAb"
first)
$ (but not $ a$b "a$b"
last)

anchors the match to
the beginning of a
line

anchors the match to
the end of a line

A has no special
meaning unless its
first

$ has no special
meaning unless its
last

12

Basic Regular Expressions (con't)

Expression | Matches Ex. Example Comment
Matches

special as if the [\] "\"
character character is
inside [and not special

]

\ followed that character .
by a special with its special

character meaning
removed
\ followed the non- \a "a"
by non- special
special character

character

conditions:]’ must
be first, '"A" must not
be first, and '-' must
be last

like globbing

\ before a non-
special character is
ignored

Exploring Regular Expressions

» testing regular expressons with grep on stdin

° fun grep —-color=auto 'expr'
- use single quotes to protect your expr from the
shell

- grep will wait for you to repeatedly enter your test
strings (type AD to finish)

- grep will print any string that matches your expr,
so each matched string will appear twice (once
when you type it, and once when grep prints it)

- the part of the string that matched will be colored

- unmatched strings will appear only once where you
typed them

A\ \\\ Ny
AN\ MR

14

Basic Regular Expressions (cont'd)

» For now, we'll use grep on the command line

» We will get into the habit of putting our regex
in single quotes on the command line to
protect the regex from the shell

» Special characters for basic regular
expressions: \, [,], ., *, *, $

» can match single quote by using double
quotes, as in : grep "I said, \"don't\""

» alternatively: grep 'I said, "don'\''t"™'

15

Regular Expressions

» Appendix A in the Sobell Text book is a
source of information

» You can read under REGULAR EXPRESSIONS
in the man page for the grep command - this
tells you what you need to know

» The grep man page is normally available on
Unix systems, so you can use it to refresh
your memory, even years from now

16

Regular Expressions to test

» examples (try these)
- grep ‘ab’ #any string with a followed by b
- grep ‘aa*b’ #one or more a followed by b
- grep ‘a..*b’ #a, then one or more anything, then b
- grep ‘a.*b’ #a then zero or more anything, then b
- grep ‘a.b’ # a then exactly one anything, then b
o grep ‘Ad’ # a must be the first character
- grep ‘Aa.*b$’ # a must be first, b must be last

» Try other examples: have fun!

17

Character classes

» Character classes are lists of characters inside
square brackets

» T

g
» C

ne work the same in regex as they do in
obbing

naracter class expressions always match

EXACTLY ONE character (unless they are
repeated by appending '*)

» [azh] matches "a" or "h" or "z

18

Character Classes (cont'd)

» Non-special characters inside the square
brackets form a set (order doesn't matter,
and repeats don’t affect the meaning):
> [azh] and [zha] and [aazh] are all equivalent

» Special characters lose their meaning when
inside square brackets, but watch out for ~,
1, and — which do have special meaning
inside square brackets, depending on where
they occur

19

Character classes (cont'd)

» ~ inside square brackets makes the character
class expression mean "any single character
UNLESS it's one of these"

» [~azh] means "any single character that is
NOT a, z, orh"

» ~ has its special "inside square brackets”

meaning only if it is the first character inside
the square brackets

» [a”zh] means a, h, z, or ©
» Remember, leading ~ outside of square

orackets has special meaning "match
peginning of line"

\ A

20

Character classes (cont'd)

» 1 can be placed inside square brackets but it
has to be first (or second if ~ is first)

» []azh] means], a, h, Or z
» [~lazh] means "any single character that is
NOT 1, a, h, or z"

» Attempting to put Jinside square brackets in
any other position is a syntax error:
- [ab]d] is a failed attempt at [ab] [d]
> [1 is a failed attempt at []]

21

Character class ranges (avoid)

» — inside square brackets represents a range
of characters, unless it is first or last

» [az-] means a, z, Or -
» [a—z] means any one character between a
and z inclusive (but what does that mean?)

» "Between a and z inclusive” used to mean
something, because there was only one locale

» Now that there is more than one locale, the
meaning of "between a and z inclusive" is
ambiguous because it means different things
in different locales

22

Internationalization (i18n)

» i18n basically means "support for more than one locale"
» Not all computer users use the same alphabet

» When we write a shell script, we want it to handle text and filenames
properly for the user, no matter what language they use

» In the beginning, there was ASCII, a 7 bit code of 128 characters

» Now there’s Unicode, a table that is meant to assign an integer to
every character in the world

» UTF-8 is an implementation of that table, encoding the 7-bit ASCII
characters in a single byte with high order bit of 0

» The 128 single-byte UTF-8 characters are the same as true ASCII
bytes (both have a high order bit of 0)

» UTF-8 characters that are not ASCIl occupy more than one byte, and
these give us our accented characters, non-Latin characters, etc

» Locale settings determine how characters are interpreted and
treated, whether as ASCIl or UTF-8, their ordering, and so on

23

What is locale

v

A locale is the definition of the subset of a user's environment that
depends on language and cultural conventions.

For example, in a French locale, some accented characters qualify as
'lower case alphabetic”, but in the old "C" locale, ASCIl a-z contains
no accented characters.

Locale is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behavior
of components of the system.

Category names correspond to the following environment variable
names (the first three especially can affect the behavior of our shell
scripts):

o LC_ALL:Overrides any individual setting of the below categories.

- LC_CTYPE. Character classification and case conversion.

o LC_COLLATE: Collation order.

o LC_MONETARY: Monetary formatting.

o LC_NUMERIC: Numeric, non-monetary formatting.

o LC_TIME. Date and time formats.

o LC_MESSAGES: Formats of informative and diagnostic messages and interactive
responses.

24

Ranges depend on locale

$ export LC ALL=C
S echo *

A BCUZ abuccz

S echo [a-z]*

a b c z

S export LC ALL=en CA.UTF-8
$ echo * B B

A aBbCc2Zz

S echo [a-z]*

a Bb Cc 2 z

$

25

POSIX character classes

» Do not use ranges in bracket expressions

» We now use special symbols to represent the
sets of characters that we used to represent
with ranges.

» These all start with [: and end with :]
» For example lower case alphabetic characters

are represented by the symbol [:1lower:]

> [[:lower:]] matches any lower case alpha char
o [AZ[:lower:]112] matches A, 7z, 1, 2, orany
lower case alpha char

26

POSIX character classes

v Vv VvV VvV VvV vV VvV v

4
4
>
4

:alnum:] alphanumeric characters

:alpha:] alphabetic characters

:blank:] space, tab

:cntrl:] control characters

:digit:] digit characters

:lower:] lower case alphabetic characters

:print:] visible characters, plus [:space:]

punct:] Punctuation characters and other symbols
o I"#$%&')*+,\-./;<=>?@[]A_ {|}~

:space:
upper:]
xdigit:]
:graph:]
mekcontrol characters)

White space (space, tab)

upper case alphabetic characters
Hexadecimal digits

Visible characters (anything except spaces

27

POSIX character classes (cont'd)

» POSIX character classes go inside [...]
» examples

> [[:alnum:]] matches any alphanumeric character
o [[:alnum:]}] matches one alphanumeric or}

° [[:alpha:][:cntrl:]] matches one alphabetic or
control character

» Take NOTE!

> [:alnum:] matches one of a,:,1,n,u,m (but grep on
the CLS will give an error by default)

> [abc[:digit:]] matches one of a,b,c, or a digit

28

POSIX character classes (cont'd)

» The exact content of each character class
depends on the local language.

» Only for plain ASCII is it true that "letters”
means English a-z and A-Z.

» Other languages have other "letters”, e.g. €, c,
etc.

» When we use the POSIX character classes, we
are specifying the correct set of characters for
the local language as per the POSIX
description

29

Gotchas

» Remember any match will be a long as
possible

> aa* matches the aaa in xaaax just once, even

though you might think there are three smaller
matches in a row

» Unix/Linux regex processing is line based
> our input strings are processed line by line
- newlines are not considered part of our input string

- we have * and s to control matching relative to
newlines

30

Gotchas (cont'd)

» expressions that match zero length strings

- remember that the repetition operator * means
"zero or more"

> any expression consisting of zero or more of
anything can also match zero

- For example, x*, "meaning zero or more x
characters”, will match ANY line, up to n+1 times,
where n is the number of (non-x) characters on that
line, because there are zero x characters before and
after every non-x character

- grep ahd regexpal.com cannot highlight matches
of zero characters, but the matches are there!

»»»»»»»»

31

Gotchas (cont'd)

» quoting (don't let the shell change regex

before grep sees the regex)

$ mkdir empty

$ cd empty

$ grep [[:upper:]] /etc/passwd | wc
503 2009 39530

$ touch Z

$ grep [[:upper:]] /etc/passwd | wc
7 29 562

$ touch A

$ grep [[:upper:]] /etc/passwd | wc
87 343 7841
$ chmod 000 Z
$ grep [[:upper:]] /etc/passwd | wc
grep: Z: Permission denied
87 343 7841

Gotchas (cont'd)

» To explain the previous slide, use echo to
print out the grep command you are actually
running:

$ echo grep [[:upper:]] /etc/passwd
grep A Z /etc/passwd

$rm?

$ echo grep [[:upper:]] /etc/passwd
grep [[:upper:]] /etc/passwd

33

Gotchas

» we will not use range expressions

» we'll standardize on en_CA.UTF-8 so that the
checking script for assignments always sees
things formatted the same way

34

Regex Resources

» http://www.regular-
expressions.info/tutorial.html

» http://lynda.com
» http://regexpal.com
» http://teaching.idallen.com/cst8177/14w/no

tes/000_character_sets.html

» http://www.reqular-
expressions.info/posixbrackets.html

.

35

http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://lynda.com
http://regexpal.com/
http://regexpal.com/
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html

Lynda.com

» Some students are already comfortable with
the command line

» For those who aren't, yet another tutorial
source that might help is Lynda.com

» All Algonquin students have free access to
Lynda.com

» Unix for Mac OSX users:

http://www.lynda.com/Mac-0S-X-10-6-tutorials/Unix-for-Mac-0S-X-
Users/78546-2.html

36

Lynda.com and regex

» Lynda.com has a course on regular expressions

» The problem is that it covers our material as well as some
more advanced topics that we won't cover

» Itis a good presentation, and the following chapters should
have minimal references to the "too advanced" material

> Chapter 2 Characters
> Chapter 3 Character Sets
> Chapter 4 Repetition Expressions

» On campus use this URL:

http://www.lynda.com/Regular-Expressions—-tutorials/Using-Regular-
Expressions/85870-2.html

» Off campus use this URL:

37

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html

Assignment 3 on regex

» Assignment 3 asks you to write shell scripts

» These are simple scripts: just the script header,
and a grep command where coming up with the
regex is your work to be done

» You don't need extended regular expression

functionality, and the checking script will disallow
it

38

