
Regular Expressions

1

 Our standard script header

 Matching patterns

 POSIX character classes

 Regular Expressions

 Character classes

 Some Regular Expression gotchas

 Regular Expression Resources

 Assignment 3 on Regular Expressions

2

#!/bin/sh -u

PATH=/bin:/usr/bin ; export PATH # add /sbin and /usr/sbin if needed

umask 022 # use 077 for secure scripts

3

 There are two different pattern matching
facilities that we use in Unix/Linux:

1. filename globbing patterns match existing
pathnames in the current filesystem only

2. regular expressions match substrings in
arbitrary input text

 We need to pay close attention to which of
the two situations we're in, because some of
the same special characters have different
meanings!

4

 Globbing is used for
◦ globbing patterns in command lines

◦ patterns used with the find command

 shell command line (the shell will match the
patterns against the file system):
◦ ls *.txt

◦ echo ?????.txt

◦ vi [ab]*.txt

 find command (we double quote the pattern so
the find command sees the pattern, not the shell):
◦ find ~ -name "*.txt"

◦ in this case, the find command matches the pattern against
the file system

5

 IMPORTANT: regular expressions use some of
the same special characters as filename
matching on the previous slide but they mean
different things!

 Regular expressions can be used in awk,
grep, vi, sed, more, less, and many

email server applications.

6

 Before we look at regular expressions, let's
take a look at some expressions you're
already comfortable with: algebraic
expressions

 Larger algebraic expressions are formed by
putting smaller expressions together

7

Expression Meaning Comment

a a a simple expression

b b another simple expression

ab a x b ab is a larger expression formed from
two smaller ones
concatenating two expressions
together means to multiply them

b2 b x b we might have represented this with
b^2, using ^ as an exponentiation
operator

ab2 a x (b x b) why not (a x b) x (a x b)?

(ab)2 (a x b) x (a x b)

8

 [:alnum:] alphanumeric characters

 [:alpha:] alphabetic characters

 [:blank:] space, tab

 [:cntrl:] control characters

 [:digit:] digit characters

 [:lower:] lower case alphabetic characters

 [:print:] visible characters, plus [:space:]

 [:punct:] Punctuation characters and other symbols
◦ !"#$%&'()*+,\-./:;<=>?@[]^_`{|}~

 [:space:] White space (space, tab)

 [:upper:] upper case alphabetic characters

 [:xdigit:] Hexadecimal digits

 [:graph:] Visible characters (anything except spaces
and control characters)

 9

Expression Meaning Comment

a match single 'a' a simple expression

b match single 'b' another simple expression

ab match strings
consisting of single
'a' followed by
single 'b'

"ab" is a larger expression formed
from two smaller ones
concatenating two regular
expressions together means
"followed immediately by" and we'll
say "followed by"

b* match zero or
more 'b' characters

a big difference in meaning from the
'*' in globbing! This is the regular
expression repetition operator.

ab* 'a' followed by zero
or more 'b'
characters

why not repeating ('a' followed by 'b'),
zero or more times? Hint: think of
"ab2" in algebra.

\(ab\)* ('a' followed by 'b'),
zero or more times

We can use parenthesis, but in Basic
Regular Expressions, we use \(and \)

10

Expression Matches Ex. Example
Matches

Comment

non-special
character

itself x "x" like globbing

one
expression
followed by
another

first followed
by second

xy "xy" like globbing

. any single
character

. "x" or "y"
or "!" or "."
or "*"
…etc

like the '?' in globbing

expression
followed by
*

zero or more
matches of the
expression

x* "" or "x" or
"xx" or
"xxx"
…etc

NOT like the * in
globbing, although .*
behaves like * in
globbing

character
classes

a SINGLE
character from
the list

[abc] "a" or "b"
or "c"

like globbing

11

Expression Matches Ex. Example
Matches

Comment

^ beginning of a
line of text

^x "x" if it’s
the first
character
on the line

anchors the match to
the beginning of a
line

$ end of a line of
text

x$ "x" if it's
the last
character
on the line

anchors the match to
the end of a line

^ (but not
first)

^ a^b "a^b" ^ has no special
meaning unless its
first

$ (but not
last)

$ a$b "a$b" $ has no special
meaning unless its
last

12

Expression Matches Ex. Example
Matches

Comment

special
character
inside [and
]

as if the
character is
not special

[\] "\" conditions: ']' must
be first, '^' must not
be first, and '-' must
be last

\ followed
by a special
character

that character
with its special
meaning
removed

\. "." like globbing

\ followed
by non-
special
character

the non-
special
character

\a "a" \ before a non-
special character is
ignored

13

 testing regular expressons with grep on stdin
◦ run grep --color=auto 'expr'

◦ use single quotes to protect your expr from the
shell

◦ grep will wait for you to repeatedly enter your test
strings (type ^D to finish)

◦ grep will print any string that matches your expr,
so each matched string will appear twice (once
when you type it, and once when grep prints it)

◦ the part of the string that matched will be colored

◦ unmatched strings will appear only once where you
typed them

14

 For now, we'll use grep on the command line

 We will get into the habit of putting our regex
in single quotes on the command line to
protect the regex from the shell

 Special characters for basic regular
expressions: \, [,], ., *, ^, $

 can match single quote by using double
quotes, as in : grep "I said, \"don't\""

 alternatively: grep 'I said, "don'\''t"'

15

 Appendix A in the Sobell Text book is a
source of information

 You can read under REGULAR EXPRESSIONS
in the man page for the grep command - this
tells you what you need to know

 The grep man page is normally available on
Unix systems, so you can use it to refresh
your memory, even years from now

16

 examples (try these)
◦ grep ‘ab’ #any string with a followed by b

◦ grep ‘aa*b’ #one or more a followed by b

◦ grep ‘a..*b’ #a, then one or more anything, then b

◦ grep ‘a.*b’ #a then zero or more anything, then b

◦ grep ‘a.b’ # a then exactly one anything, then b

◦ grep ‘^a’ # a must be the first character

◦ grep ‘^a.*b$’ # a must be first, b must be last

 Try other examples: have fun!

17

 Character classes are lists of characters inside
square brackets

 The work the same in regex as they do in
globbing

 Character class expressions always match
EXACTLY ONE character (unless they are
repeated by appending '*')

 [azh] matches "a" or "h" or "z"

18

 Non-special characters inside the square
brackets form a set (order doesn't matter,
and repeats don’t affect the meaning):
◦ [azh] and [zha] and [aazh] are all equivalent

 Special characters lose their meaning when
inside square brackets, but watch out for ^,
], and – which do have special meaning
inside square brackets, depending on where
they occur

19

 ^ inside square brackets makes the character
class expression mean "any single character
UNLESS it's one of these"

 [^azh] means "any single character that is
NOT a, z, or h"

 ^ has its special "inside square brackets"
meaning only if it is the first character inside
the square brackets

 [a^zh] means a, h, z, or ^

 Remember, leading ^ outside of square
brackets has special meaning "match
beginning of line"

20

] can be placed inside square brackets but it
has to be first (or second if ^ is first)

 []azh] means], a, h, or z

 [^]azh] means "any single character that is
NOT], a, h, or z"

 Attempting to put]inside square brackets in
any other position is a syntax error:
◦ [ab]d] is a failed attempt at [ab][d]

◦ [] is a failed attempt at []]

21

 - inside square brackets represents a range
of characters, unless it is first or last

 [az-] means a, z, or -

 [a-z] means any one character between a
and z inclusive (but what does that mean?)

 "Between a and z inclusive" used to mean
something, because there was only one locale

 Now that there is more than one locale, the
meaning of "between a and z inclusive" is
ambiguous because it means different things
in different locales

22

 i18n basically means "support for more than one locale"

 Not all computer users use the same alphabet

 When we write a shell script, we want it to handle text and filenames
properly for the user, no matter what language they use

 In the beginning, there was ASCII, a 7 bit code of 128 characters

 Now there’s Unicode, a table that is meant to assign an integer to
every character in the world

 UTF-8 is an implementation of that table, encoding the 7-bit ASCII
characters in a single byte with high order bit of 0

 The 128 single-byte UTF-8 characters are the same as true ASCII
bytes (both have a high order bit of 0)

 UTF-8 characters that are not ASCII occupy more than one byte, and
these give us our accented characters, non-Latin characters, etc

 Locale settings determine how characters are interpreted and
treated, whether as ASCII or UTF-8, their ordering, and so on

23

 A locale is the definition of the subset of a user's environment that
depends on language and cultural conventions.

 For example, in a French locale, some accented characters qualify as
'lower case alphabetic", but in the old "C" locale, ASCII a-z contains
no accented characters.

 Locale is made up from one or more categories. Each category is
identified by its name and controls specific aspects of the behavior
of components of the system.

 Category names correspond to the following environment variable
names (the first three especially can affect the behavior of our shell
scripts):
◦ LC_ALL: Overrides any individual setting of the below categories.

◦ LC_CTYPE: Character classification and case conversion.

◦ LC_COLLATE: Collation order.

◦ LC_MONETARY: Monetary formatting.

◦ LC_NUMERIC: Numeric, non-monetary formatting.

◦ LC_TIME: Date and time formats.

◦ LC_MESSAGES: Formats of informative and diagnostic messages and interactive
responses.

24

$ export LC_ALL=C

$ echo *

A B C Z a b c z

$ echo [a-z]*

a b c z

$ export LC_ALL=en_CA.UTF-8

$ echo *

A a B b C c Z z

$ echo [a-z]*

a B b C c Z z

$

25

 Do not use ranges in bracket expressions

 We now use special symbols to represent the
sets of characters that we used to represent
with ranges.

 These all start with [: and end with :]

 For example lower case alphabetic characters
are represented by the symbol [:lower:]
◦ [[:lower:]] matches any lower case alpha char

◦ [AZ[:lower:]12] matches A, Z, 1, 2, or any
lower case alpha char

26

 [:alnum:] alphanumeric characters

 [:alpha:] alphabetic characters

 [:blank:] space, tab

 [:cntrl:] control characters

 [:digit:] digit characters

 [:lower:] lower case alphabetic characters

 [:print:] visible characters, plus [:space:]

 [:punct:] Punctuation characters and other symbols
◦ !"#$%&'()*+,\-./:;<=>?@[]^_`{|}~

 [:space:] White space (space, tab)

 [:upper:] upper case alphabetic characters

 [:xdigit:] Hexadecimal digits

 [:graph:] Visible characters (anything except spaces
and control characters)

 27

 POSIX character classes go inside […]

 examples
◦ [[:alnum:]] matches any alphanumeric character

◦ [[:alnum:]}] matches one alphanumeric or }

◦ [[:alpha:][:cntrl:]] matches one alphabetic or
control character

 Take NOTE!
◦ [:alnum:] matches one of a,:,l,n,u,m (but grep on

the CLS will give an error by default)

◦ [abc[:digit:]] matches one of a,b,c, or a digit

28

 The exact content of each character class
depends on the local language.

 Only for plain ASCII is it true that "letters"
means English a-z and A-Z.

 Other languages have other "letters", e.g. é, ç,
etc.

 When we use the POSIX character classes, we
are specifying the correct set of characters for
the local language as per the POSIX
description

29

 Remember any match will be a long as
possible
◦ aa* matches the aaa in xaaax just once, even

though you might think there are three smaller
matches in a row

 Unix/Linux regex processing is line based
◦ our input strings are processed line by line

◦ newlines are not considered part of our input string

◦ we have ^ and $ to control matching relative to
newlines

30

 expressions that match zero length strings
◦ remember that the repetition operator * means

"zero or more"

◦ any expression consisting of zero or more of
anything can also match zero

◦ For example, x*, "meaning zero or more x
characters", will match ANY line, up to n+1 times,
where n is the number of (non-x) characters on that
line, because there are zero x characters before and
after every non-x character

◦ grep and regexpal.com cannot highlight matches
of zero characters, but the matches are there!

31

 quoting (don't let the shell change regex
before grep sees the regex)

$ mkdir empty

$ cd empty

$ grep [[:upper:]] /etc/passwd | wc

 503 2009 39530

$ touch Z

$ grep [[:upper:]] /etc/passwd | wc

 7 29 562

$ touch A

$ grep [[:upper:]] /etc/passwd | wc

 87 343 7841

$ chmod 000 Z

$ grep [[:upper:]] /etc/passwd | wc

grep: Z: Permission denied

 87 343 7841

32

 To explain the previous slide, use echo to
print out the grep command you are actually
running:

$ echo grep [[:upper:]] /etc/passwd

grep A Z /etc/passwd

$ rm ?

$ echo grep [[:upper:]] /etc/passwd

grep [[:upper:]] /etc/passwd

33

 we will not use range expressions

 we'll standardize on en_CA.UTF-8 so that the
checking script for assignments always sees
things formatted the same way

34

 http://www.regular-
expressions.info/tutorial.html

 http://lynda.com

 http://regexpal.com

 http://teaching.idallen.com/cst8177/14w/no
tes/000_character_sets.html

 http://www.regular-
expressions.info/posixbrackets.html

35

http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://lynda.com
http://regexpal.com/
http://regexpal.com/
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://teaching.idallen.com/cst8177/14w/notes/000_character_sets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html
http://www.regular-expressions.info/posixbrackets.html

 Some students are already comfortable with
the command line

 For those who aren't, yet another tutorial
source that might help is Lynda.com

 All Algonquin students have free access to
Lynda.com

 Unix for Mac OSX users:
http://www.lynda.com/Mac-OS-X-10-6-tutorials/Unix-for-Mac-OS-X-
Users/78546-2.html

36

 Lynda.com has a course on regular expressions

 The problem is that it covers our material as well as some
more advanced topics that we won't cover

 It is a good presentation, and the following chapters should
have minimal references to the "too advanced" material
◦ Chapter 2 Characters

◦ Chapter 3 Character Sets

◦ Chapter 4 Repetition Expressions

 On campus use this URL:

http://www.lynda.com/Regular-Expressions-tutorials/Using-Regular-
Expressions/85870-2.html

 Off campus use this URL:

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-
tutorials/Using-Regular-Expressions/85870-2.html

37

http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html
http://wwwlyndacom.rap.ocls.ca/Regular-Expressions-tutorials/Using-Regular-Expressions/85870-2.html

 Assignment 3 asks you to write shell scripts

 These are simple scripts: just the script header,
and a grep command where coming up with the
regex is your work to be done

 You don't need extended regular expression
functionality, and the checking script will disallow
it

38

