
Regular Expressions 
 

1 



 Basic Regular Expression Examples 

 Extended Regular Expressions 

 Extended Regular Expression Examples 

 

 

 

 

 

 

 

2 



 phone number 
◦ 3 digits, dash, 4 digits 
[[:digit:]][[:digit:]][[:digit:]]-[[:digit:]][[:digit:]][[:digit:]][[:digit:]] 

 postal code 
◦ A9A 9A9 
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]] 

 email address (simplified, lame) 
◦ someone@somewhere.com 

◦ domain name cannot begin with digit 
[[:alnum:]_-][[:alnum:]_-]*@[[:alpha:]][[:alnum:]-]*\.[[:alpha:]][[:alpha:]]*  

 

3 

mailto:someone@somewhere.com


 any line containing only alphabetic characters 
(at least one), and no digits or anything else 
^[[:alpha:]][[:alpha:]]*$ 

 any line that begins with digits (at least one) 
◦ In other words, lines that begin with a digit 
^[[:digit:]] 

^[[:digit:]].*$ would match the exact same lines in grep 

 any line that contains at least one character of 
any kind 

. 

^..*$ would match the exact same lines in grep 

4 



5 



The generic syntax: [#1]operation[#2]target 

Examples: 

6 

Ref: http://www.tutorialspoint.com/unix/unix-vi-editor.htm 



 To do search and replace in vi, can search for 
a regex, then make change, then repeat 
search, repeat command: 

 in vi (and sed, awk, more, less) we 
delimit regular expressions with / 

 capitalize sentences 
◦ any lower case character following by a period and 

two spaces should be replaced by a capital 

◦ search for /\.  [[:lower:]]/ 

◦ then type 4~ 

◦ then type n. as many times as necessary 

◦ n moves to the next occurrence, and . repeats the 
capitalization command 

 
7 



 uncapitalize in middle of words 
◦ any upper case character following a lower case 

character should be made lower case 

◦ type /[[:lower:]][[:upper:]] 

◦ notice the second / is optional and not present here 

◦ then type l to move one to the right 

◦ type ~ to change the capitalization 

◦ type nl. as necessary 

◦ the l is needed because vi will position the cursor 
on the first character of the match, which in this 
case is a character that doesn't change. 

 

 
8 



 Now three kinds of matching 
1. Filename globbing 

    used on shell command line, and shell matches these 

          patterns to filenames that exist 

    used with the find command (quote from the shell) 

2. Basic Regular Expressions, used with 

 vi (use delimiter) 

 more (use delimiter) 

 sed (use delimiter) 

 awk (use delimiter) 

 grep (no delimiter, but we quote from the shell) 

3. Extended Regular Expressions 

 less (use delimiter) 

 grep –E (no delimiter, but quote from the shell) 

 perl regular expressions (not in this course) 

9 



 ls a*.txt  # this is filename globbing 
◦ The shell expands the glob before the ls command runs 

◦ The shell matches existing filenames in current directory 
beginning with 'a', ending in '.txt' 

 grep 'aa*' foo.txt  # regular expression 
◦  Grep matches strings in foo.txt beginning with 'a' followed 

by zero or more 'a's 

◦ the single quotes protect the '*' from shell filename 
globbing 

 Be careful with quoting: 
◦ grep aa* foo.txt  # no single quotes,  bad idea 

 shell will try to do filename globbing on aa*, changing it into 
existing filenames that begin with aa before grep runs: we don't 
want that. 

 
10 



 All of what we've officially seen so far, except 
that one use of parenthesis many slides back, 
are the Basic features of regular expressions 

 Now we unveil the Extended features of 
regular expressions 

 In the old days, Basic Regex implementations 
didn't have these features 

 Now, all the Basic Regex implementations 
we'll encounter have these features 

 The difference between Basic and Extended 
Regular expressions is whether you use a 
backslash to make use of these Extended 
features 

11 



12 

Basic Extended Repetition Meaning 

* * zero or more times 

\? ? zero or one times 

\+ + one or more times 

\{n\} {n} n times, n is an integer 

\{n,\} {n,} n or more times, n is an integer 

\{n,m\} {n,m} at least n, at most m times, n and m are 
integers 



 can do this with Basic regex in grep with –e 
◦ example: grep –e 'abc' –e 'def' foo.txt 

◦ matches lines with abc or def in foo.txt 

 \| is an infix "or" operator 

 a\|b means a or b but not both 

 aa*\|bb* means one or more a's, or one or 
more b's 

 for extended regex, leave out the \, as in a|b 

13 



 repetition is tightest (think exponentiation) 
◦ xx* means x followed by x repeated, not xx 

repeated 

 concatenation is next tightest (think 
multiplication) 
◦ aa*\|bb* means aa* or bb* 

 alternation is the loosest or lowest 
precedence (think addition) 

 Precedence can be overridden with 
parenthesis to do grouping 

14 



 \( and \) can be used to group regular 
expressions, and override the precedence 
rules 

 For Extended Regular Expressions, leave out 
the \, as in ( and ) 

 abb* means ab followed by zero or more b's 

 a\(bb\)*c means a followed by zero or 
more pairs of b's followed by c 

 abbb\|cd would mean abbb or cd 

 a\(bbb\|c\)d would mean a, followed by 
bbb or c, followed by d 

 

 
15 



16 

Operation Regex Algebra 

grouping () or \(\) parentheses  
brackets 

repetition * or ? or + or {n} or {n,} or {n,m} 
* or \? or \+ or \{n\} or \{n,\} or \{n,m\} 

exponentiation 

concatenation ab multiplication 

alternation | or \| addition 



 To remove the special meaning of a meta 
character, put a backslash in front of it 

 \* matches a literal * 

 \. matches a literal . 

 \\ matches a literal \ 

 \$ matches a literal $ 

 \^ matches a literal ^ 

 For the extended functionality,  
◦ backslash turns it on for basic regex 

◦ backslash turns it off for extended regex 

17 



 Another extended regular expression feature  

 When you use grouping, you can refer to the 
n'th group with \n 

 \(..*\)\1 means any sequence of one or 
more characters twice in a row 

 The \1 in this example means whatever the 
thing between the first set of \( \) matched 

 Example (basic regex):  

\(aa*\)b\1 means any number of a's 
followed by b followed by exactly the same 
number of a's 

 

 18 



 phone number 
◦ 3 digits, optional dash, 4 digits 

◦ we couldn't do optional single dash in basic regex 
[[:digit:]]{3}-?[[:digit:]]{4} 

 postal code 
◦ A9A 9A9 

◦ Same as basic regex 
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]] 

 email address (simplified, lame) 
◦ someone@somewhere.com 

◦ domain name cannot begin with digit or dash 
[[:alnum:]_-]+@([[:alpha:]][[:alnum:]-]+\.)+[[:alpha:]]+ 

 

19 

mailto:someone@somewhere.com


 

20 



21 


