CST8177 - Linux |l

Review of Fundamentals

Topics

» The shell
» VI
» General shell review

.

The shell

» The shell is a program that is executed for us automatically
when we log in, and we control by typing text for it to read

» Normally we are asking the shell to run programs for us on
certain arguments, which we also type

» This is the command line

» Basically, the process is this

1. The shell prints a prompt on our terminal or terminal emulator screen
(“screen”)

2. We type a command and “enter” (“return”)

3. The shell reads what we typed, interpreting special characters like space,
GLOB characters, quotation marks, etc

4. The shell carries out the operation in the way we asked (we might see
output from that operation on our screen)

5. repeat at step 1.

http://teaching.idallen.com/cst8207/12f/notes/120_shell_basics.html
http://teaching.idallen.com/cst8207/12f/notes/120_shell_basics.html

Sub-shells

» When you invoke bash, or su, or sudo —s you
begin talking to a sub-shell

» schematically for illustration:

three different bash
processes

Sub-shells (cont’d)

» closer to what we actually see :

$ bash
bash
$su
password:
exit

exit

$ exit

exit

$

Editing a text file
» Text Editors

> Windows
- notepad, wordpad (gui required)
> Unix
- vi (vim), emacs, nano, pico
- gedit (qui required - no good for CLS)
» You need to be able to edit text files without a GUI
- start the editor
> move around

- make a change
> save and quit

» VI:
http://teaching.idallen.com/cst8207/14w/notes/300_vi_text_editor.html

ong into the CLS and issue the command, vimtutor

’) \\ \\ \ '\

http://teaching.idallen.com/cst8207/14w/notes/300_vi_text_editor.html
http://teaching.idallen.com/cst8207/14w/notes/300_vi_text_editor.html

Looking things up

v

http://teaching.idallen.com/cst8207/13f/notes/140_man_page_RTFM.html
It’s normal for Unix users of all kinds (novice to expert) to
consult the manual (man pages) often.

S man man
- Read the man page for the man command

v

v

v

$ man -k listing

> Print out man page titles that include the text listing

> Try using this command with the text 1ist instead of 1isting
What did you notice?
less detail in your search terms means more search results
More detail in your search terms gives less search results

Looking things up (cont’d)

» It’s a required skill to be able to find information in technical
documentation, (“grep-ing through documents”)

» We want you to get lots of practice looking things up

> You get better and faster at looking things up the more you do it
Knowing where to look and what to look for
> You get the answer you were looking for and acquire the knowledge

» Here’s the normal process when you encounter a concept that

you don’t know or it’s become vague or you’ve forgotten

search for the term in the manual
Often you’ll get too much information, including information that is much more advanced than
you need - that’s normal, use the search facility

search for the term in the course notes
All of the CST8207 course notes are available in text form on the CLS
search for the term on the web (be careful)

ask your professor or lab instructor
This includes situations where you have trouble with any of the above!

Commands, programs, scripts, etc.

Command

A directive to the shell typed at the prompt. It could be a
utility, a program, a built-in, or a shell script.

Program

A file containing a sequence of executable instructions.
Note that it's not always a binary file but can be text (that
IS, a script).

Script

A file containing a sequence of text statements to be
processed by an interpreter like bash, Perl, etc.

Every program or script has a stdin, stdout, and stderr by
default, but they may not always be used.

Filter

A program that takes its input from stdin and send its
output to stdout. It is often used to transform a stream of
data through a series of pipes.

Scripts are often written as filters.

Utility

A program/script or set of programs/scripts that provides
a service to a user. (Is, grep, sort, unig, many many more)
Built-in

A command that is built into the shell. That is, it is not a

program or script as defined above. It also does not
require a new process, unlike those above.

History

A list of previous shell commands that can be recalled,
edited if desired, and re-executed.

Token

The smallest unit of parsing; often a word delimited by
white space (blanks or spaces, tabs and newlines) or
other punctuation (quotes and other special characters).

stdin

The standard input file; the keyboard; the file at offset 0
In the file table.

stdout

The standard output file; the terminal screen; offset 1 in
the file table.

stderr

The standard error file; usually the terminal screen; offset
2 in the file table.

Standard I/0O (Numbered O, 1, and 2, in order)

stdin, stdout, and stderr

Pipe

Connects the stdout of one program to the stdin of the
next; the "|" (pipe, or vertical bar) symbol.

A command line that involves this is called a pipeline
Redirect

To use a shell service that replaces stdin, stdout, or stderr
with a regular named file.

Process

http://teaching.idallen.com/cst8207/14w/notes/770_processes_and_jobs.html

A process is what a script or program is called while it's being
executed. Some processes (called daemons) never end, as they
provide a service to many users, such as crontab services from crond.

.Other processes are run by you, the user, from commands you enter
at the prompt. These usually run in the foreground, using the screen
and keyboard for their standard I/O. You can run them in the
background instead, if you wish.

«Each process has a PID (or pid, the process identifier), and a parent
process with its own pid, known to the child as a ppid (parent pid).
You can look at the running processes with the ps command or
examine the family relationships with pstree.

.Example: print out a full-format listing of all processes:

ps -ef

Child process

«Every process is a child process, with the sole exception
of process number 1 —the init process.

A child process is forked or spawned from a parent by
means of a system call to the kernel services.

.Forking produces an exact copy of the process, so it is
then replaced by an exec system call.

.The forked copy also includes the environment variables
and the file table of the parent.

.This becomes very useful when redirecting standard /0O,
since a child can redirect its own I/O without affecting its
parent.

.Each non-builtin command is run as a child of your shell

\s are part of the shell process: man builtin).

History

.The command history is a list of all the previous
commands you have executed in this session with this
copy of the shell. It's usually set to some large number
of entries, often 1000 or more.

.Use echo $HISTSIZE to see your maximum entries

.You can reach back into this history and pull out a
command to edit (if you wish) and re-execute.

.To make the history of all your simultaneous sessions
IS captured, do

shopt -s histappend

In your .bashrc

Some history examples

o To list the history:
System prompt> history | less

« To repeat the last command entered:
System prompt> !

« Torepeat the last Is command.:
System prompt> !ls

« To repeat the command from prompt number 3:
System prompt> 13

« To scroll up and down the list:
Use arrow keys

« To edit the command:

Q| t0 the command and edit in place

Redirection

.Three file descriptors are open and available
Immediately upon shell startup: stdin, stdout, stderr

.These can be overridden by various redirection
operators

.Following is a list of most of these operators (there are
a few others that we will not often use; see man bash
for detalls)

If no number is present with > or <, 0 (stdin) is
assumed for < and 1 (stdout) for >; to work with 2
(stderr) it must be specified, like 2>

Operator

< filename

> filename

>> fllename

2> filename
2>> fillename

&> filename

>& filename
&>> filename

Behaviour

Individual streams

Redirects stdin from filename
Redirects stdout to filename
Appends stdout onto filename
Redirects stderr to filename
Appends stderr onto filename

Combined streams

Redirects both stdout and stderr to
fllename

Same as &>, but do not use

Appends both stdout and stderr onto
filename

Not valid; produces an error

Operator Behaviour

Merged streams

2>&1 Redirects stderr to the same place as
stdout, which, if redirected, must
already be redirected

1>&2 Redirects stdout to the same place as
stderr, which, if redirected, must
already be redirected

Special stdin processing ("here" files),
mainly for use within scripts

<< string Read stdin using string as the end-of-
file indicator

<<- string Same as <<, but remove leading TAB
characters

_ <<< string Read string into stdin

Command aliases

.10 create an alias (no spaces after alias name)
alias lI="[s -I"

.T0 list all aliases
alias or alias|less

.10 delete an alias
unalias |l

.Command aliases are normally placed in your
~/.bashrc file (first, make a back-up copy; then use vi to
edit the file)

oIf you need something more complex than a simple
alias (they have no arguments or options), then write a
pash function script (that topic is coming soon).

\

Filename Globbing and other Metacharacters

Metacharacter Behaviour
\ Escape; use next char literally
& Run process in the background

; Separate multiple commands

PXXX Substitute variable xxx

? Match any single character

* Match zero or more characters
[abc] Match any one char from list
[labc] Match any one char not in list
(cmd) Run command in a subshell

{cmd} Run in the current shell

Simple Quoting
«No quoting:
System Prompt$ echo $SHELL
/bin/bash
eDouble quote: "
System Prompt$ echo "$SHELL"
/bin/bash
.Single quote: '
System Prompt$ echo '$SHELL'
$SHELL
Observations:
Double quotes allow variable substitution;
ingle quotes do not allow for substitution.

B\ N\

Quoting

» Backslash \ removes the special meaning of
the special character that follows it

» Single quotes remove the special meaning
from all special characters

- Cannot include single quote inside single quotes
not even with backslash

» Double quotes remove the special meaning
from special characters, except! $ \ °

> This means history, variable expansion, command
substitution and backslash escaping all work inside
double quotes

23

Escape and Quoting

.Escape alone:
Prompt$ echo \$SHELL
$SHELL
«Escape inside double quotes:
Prompt$ echo "\$SHELL"
$SHELL
«Escape inside single quotes:
Prompt$ echo \$SHELL'
\$SHELL
Observations:
Backslash escapes the next character;
Double quotes obey escape (process it);

}%\Single guotes don't process it (treat literally)
AN N

Filespecs and Quoting

System Prompt$ Is
abec

System Prompt$ echo *
abc

System Prompt$ echo "™*"
*

System Prompt$ echo "'
*

System Prompt$ echo *

Observation:
Everything prevents file globs

Backquotes and Quoting

System Prompt$ echo $(Is) # alternate
abc

System Prompt$ echo 'Is # forms
abc

System Prompt$ echo "'Is™

a

b

C

System Prompt$ echo "Is™

N

Observations:

Single quotes prevent command processing

Summary so far

Double quotes allow variable substitution
"$SHELL" becomes /bin/bash

Single quotes do not allow for substitution
'$SHELL' becomes $SHELL

Backslash escapes the next character
\$SHELL becomes $SHELL

Double quotes obey escape (process it);
"\$SHELL" becomes $SHELL

Single quotes don't process it (treat it literally)
\$SHELL' becomes \$SHELL

Everything prevents file globs

" * each become *

Single quotes prevent command processing
~_JIs "' becomes 'Is’

Escaping quotes

System Prompt$ echo ab"cd
S

abcd

System Prompt$ echo ab\"cd
ab"cd

System Prompt$ echo 'ab\"cd'
ab\"cd

System Prompt$ echo "ab"cd"
> 11

abcd

More quote escapes

System Prompt$ echo "ab\"cd"
ab"cd

System Prompt$ echo don't
ST

dont

System Prompt$ echo don\'t
don't

System Prompt$ echo "don't"
don't

System Prompt$ echo 'don't’
S0

dont

Observations
Unbalanced quotes cause a continuation prompt

Unescaped quotes are removed (but their meaning is
applied)

"hello" becomes hello

"$HOME" becomes /home/username

Quoting protects quotes, as does \ escaping

"don't" and don\'t are the same, and OK

Single quotes are more restrictive than double
System Prompt$ echo '$USER' "$USER"

$USER someusername

Add a Linux command

create a simple shell script

make it executable

copy it to a directory that is in our $PATH
presto, we have extended Linux

