
awk

1

 What is awk?

 Fully functional programming language written for
processing text and numbers

 Small, fast, and simple

 Works field by field

 As opposed to grep, which works line by line

 Field = a column of data, separated by a delimiter (e.g., a space,

a comma, etc.)

 Record = line of input

 Meant for processing column-oriented data, like tables

2

 awk [-F delim][-v var=value] ‘pattern {action; action }’ filename

 Basic idea: match a pattern  perform action(s)

 If no pattern  apply action(s) to all records/lines

 If no action  default is to print entire record

 Options and option arguments:

 -F = specify field delimiter (default: whitespace)

 -v = define a variable with its value to be used within awk

 E.g., -v bird=5

 Reads from STDIN and writes to STDOUT

 Can be used as a filter!

3

 In awk, the nth field is referred to by the variable

$n

 E.g., $1  first field, $2 = second field

 $0  refers to the whole line

 Examples:

awk ‘{print $1}’

 Prints first field of each line

awk ‘{print $0}’

 Prints each line

 To use tabs as the delimiter:

 awk –F ‘\t’ ‘{print $4}’

 Another example, this time using colons as delimiter:

 awk –F: ‘{print $6}’ /etc/passwd

 Prints home directory (sixth field) for each user

 You can print multiple fields as well:

awk –F\t ‘{print $1,$4}

 Prints first and fourth field separated by a space

 Comma here  space

awk –F\t ‘{print $1 $4}

 Prints first and fourth field WITHOUT a space

 No comma  no space

 Basically, you can print variables and other text concatenated

together:

 awk –F\t ‘{print “The”, $1, “weighed”,$4,”!”}’

 Spaces inserted where commas are

 NOTICE:

 Single quotes for the outside!

 Double quotes for the inside!

 NR = Current record (line) number

 NF = Number of fields on the current line (columns)

$NF = Last field

 FS = field separator (defaults to white space)

 OFS = output field separator

Allows you to change output delimiter

 Run the following:

  awk ‘{print “Current line:”,NR,”Field Count:”,NF}’

 Awk is now waiting for text (or EOF, which
when read will cause awk to stop)

 Enter some numbers separated by whitespace,

then hit Enter

 Awk should then print the current line number
and field count

 CTRL+D  send EOF

 You can also check for a regular expression pattern

Must be enclosed with //

Matches somewhere in the line (similar to grep)

 Examples

 awk –F\t ‘/abc/ {print $1}’

Prints first field if line contains “abc”

