
Regular Expressions

1

 Basic Regular Expression Examples

 Extended Regular Expressions

 Extended Regular Expression Examples

2

 phone number
◦ 3 digits, dash, 4 digits
[[:digit:]][[:digit:]][[:digit:]]-[[:digit:]][[:digit:]][[:digit:]][[:digit:]]

 postal code
◦ A9A 9A9
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

 email address (simplified, lame)
◦ someone@somewhere.com

◦ domain name cannot begin with digit
[[:alnum:]_-][[:alnum:]_-]*@[[:alpha:]][[:alnum:]-]*\.[[:alpha:]][[:alpha:]]*

3

mailto:someone@somewhere.com

 any line containing only alphabetic characters
(at least one), and no digits or anything else
^[[:alpha:]][[:alpha:]]*$

 any line that begins with digits (at least one)
◦ In other words, lines that begin with a digit
^[[:digit:]]

^[[:digit:]].*$ would match the exact same lines in grep

 any line that contains at least one character of
any kind

.

^..*$ would match the exact same lines in grep

4

5

The generic syntax: [#1]operation[#2]target

Examples:

6

Ref: http://www.tutorialspoint.com/unix/unix-vi-editor.htm

 To do search and replace in vi, can search for
a regex, then make change, then repeat
search, repeat command:

 in vi (and sed, awk, more, less) we
delimit regular expressions with /

 capitalize sentences
◦ any lower case character following by a period and

two spaces should be replaced by a capital

◦ search for /\. [[:lower:]]/

◦ then type 4~

◦ then type n. as many times as necessary

◦ n moves to the next occurrence, and . repeats the
capitalization command

7

 uncapitalize in middle of words
◦ any upper case character following a lower case

character should be made lower case

◦ type /[[:lower:]][[:upper:]]

◦ notice the second / is optional and not present here

◦ then type l to move one to the right

◦ type ~ to change the capitalization

◦ type nl. as necessary

◦ the l is needed because vi will position the cursor
on the first character of the match, which in this
case is a character that doesn't change.

8

 Now three kinds of matching
1. Filename globbing

 used on shell command line, and shell matches these

 patterns to filenames that exist

 used with the find command (quote from the shell)

2. Basic Regular Expressions, used with

 vi (use delimiter)

 more (use delimiter)

 sed (use delimiter)

 awk (use delimiter)

 grep (no delimiter, but we quote from the shell)

3. Extended Regular Expressions

 less (use delimiter)

 grep –E (no delimiter, but quote from the shell)

 perl regular expressions (not in this course)

9

 ls a*.txt # this is filename globbing
◦ The shell expands the glob before the ls command runs

◦ The shell matches existing filenames in current directory
beginning with 'a', ending in '.txt'

 grep 'aa*' foo.txt # regular expression
◦ Grep matches strings in foo.txt beginning with 'a' followed

by zero or more 'a's

◦ the single quotes protect the '*' from shell filename
globbing

 Be careful with quoting:
◦ grep aa* foo.txt # no single quotes, bad idea

 shell will try to do filename globbing on aa*, changing it into
existing filenames that begin with aa before grep runs: we don't
want that.

10

 All of what we've officially seen so far, except
that one use of parenthesis many slides back,
are the Basic features of regular expressions

 Now we unveil the Extended features of
regular expressions

 In the old days, Basic Regex implementations
didn't have these features

 Now, all the Basic Regex implementations
we'll encounter have these features

 The difference between Basic and Extended
Regular expressions is whether you use a
backslash to make use of these Extended
features

11

12

Basic Extended Repetition Meaning

* * zero or more times

\? ? zero or one times

\+ + one or more times

\{n\} {n} n times, n is an integer

\{n,\} {n,} n or more times, n is an integer

\{n,m\} {n,m} at least n, at most m times, n and m are
integers

 can do this with Basic regex in grep with –e
◦ example: grep –e 'abc' –e 'def' foo.txt

◦ matches lines with abc or def in foo.txt

 \| is an infix "or" operator

 a\|b means a or b but not both

 aa*\|bb* means one or more a's, or one or
more b's

 for extended regex, leave out the \, as in a|b

13

 repetition is tightest (think exponentiation)
◦ xx* means x followed by x repeated, not xx

repeated

 concatenation is next tightest (think
multiplication)
◦ aa*\|bb* means aa* or bb*

 alternation is the loosest or lowest
precedence (think addition)

 Precedence can be overridden with
parenthesis to do grouping

14

 \(and \) can be used to group regular
expressions, and override the precedence
rules

 For Extended Regular Expressions, leave out
the \, as in (and)

 abb* means ab followed by zero or more b's

 a\(bb\)*c means a followed by zero or
more pairs of b's followed by c

 abbb\|cd would mean abbb or cd

 a\(bbb\|c\)d would mean a, followed by
bbb or c, followed by d

15

16

Operation Regex Algebra

grouping () or \(\) parentheses
brackets

repetition * or ? or + or {n} or {n,} or {n,m}
* or \? or \+ or \{n\} or \{n,\} or \{n,m\}

exponentiation

concatenation ab multiplication

alternation | or \| addition

 To remove the special meaning of a meta
character, put a backslash in front of it

 * matches a literal *

 \. matches a literal .

 \\ matches a literal \

 \$ matches a literal $

 \^ matches a literal ^

 For the extended functionality,
◦ backslash turns it on for basic regex

◦ backslash turns it off for extended regex

17

 Another extended regular expression feature

 When you use grouping, you can refer to the
n'th group with \n

 \(..*\)\1 means any sequence of one or
more characters twice in a row

 The \1 in this example means whatever the
thing between the first set of \(\) matched

 Example (basic regex):

\(aa*\)b\1 means any number of a's
followed by b followed by exactly the same
number of a's

 18

 phone number
◦ 3 digits, optional dash, 4 digits

◦ we couldn't do optional single dash in basic regex
[[:digit:]]{3}-?[[:digit:]]{4}

 postal code
◦ A9A 9A9

◦ Same as basic regex
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

 email address (simplified, lame)
◦ someone@somewhere.com

◦ domain name cannot begin with digit or dash
[[:alnum:]_-]+@([[:alpha:]][[:alnum:]-]+\.)+[[:alpha:]]+

19

mailto:someone@somewhere.com

20

21

