CST8177 - Linux |l

Regular Expressions

Topics

» Basic Regular Expression Examples
» Extended Regular Expressions
» Extended Regular Expression Examples

Basic Regular Expression Examples

» phone number
- 3 digits, dash, 4 digits

[[:digit:]][[:digit:]1][[:digit:]]-[[:digit:]][[:digit:]][[:digit:]][[:digit:]]
» postal code
- A9A 9A9

[[:upper:]1]1[[:digit]][[:upper:]1] [[:digit:]][[:upper:]1]1[[:digit:]]
» email address (simplified, lame)
o someohe@somewhere.com

- domain name cannot begin with digit
[[:alnum:]_-1[[:alnum:]_-1*@[[:alpha:]]l[[:alnum:]-1*\.[[:alpha:]][[:alpha:]]*

mailto:someone@somewhere.com

Basic Regular Expression Examples

» any line containing only alphabetic characters
(at least one), and no digits or anything else
" [:alpha:]][[:alpha:]]1*sS

» any line that begins with digits (at least one)

> In other words, lines that begin with a digit
M [:digit:]]
~[[:digit:]1]1.*$ would match the exact same lines in grep

» any line that contains at least one character of
any kind

~ .. *$ would match the exact same lines in grep

Operating modes of the vi text editor

Y

4 N V A
Command mode iy Insert

A

> (N\ ™)
A | a || A | Append
))| | (s | (o) () open
[r [R | Replace
C "c | Change
Y Y Y
Other S Insert mode
commands mode

J

[w] q [Enter

Enter

J \

J\

—
£
—

f AY 4 A Y 4
o=

(N N\

The format of a vi command
The generic syntax: [#1]operation[#2]target

Examples:
Command Acti
5dw Deletes five words, starting at the current cursor position
7dd Deletes seven lines, starting at the current line
70 Opens seven blank lines after the current line
70 Opens seven blank lines before the current line
c2b Changes back two words
d7,14 Deletes lines 7 through 14 in the buffer
1G Puts the cursor on the first line of the file
10yy Yanks (copies) the next (starting with the current line) 10 lines into a

temporary buffer

Ref. http://www.tutorialspoint.com/unix/unix-vi-editor.htm

vi examples

» To do search and replace in vi, can search for
a regex, then make change, then repeat
search, repeat command:

» In vi (and sed, awk, more, less) we
delimit regular expressions with /

» capitalize sentences
- any lower case character following by a period and
two spaces should be replaced by a capital
search for /\. [[:lower:]]/
then type 4~
then type n. as many times as necessary

n moves to the next occurrence, and . repeats the
capitalization command

(@)

o

(0]

(0]

vi examples (cont'd)

» uncapitalize in middle of words

(0]

any upper case character following a lower case
character should be made lower case

type /[[:lower:]] [[:upper:]]

notice the second / is optional and not present here
then type 1 to move one to the right

type ~ to change the capitalization

type nl. as necessary

the 1 is needed because vi will position the cursor
on the first character of the match, which in this
case is a character that doesn't change.

Regular Expressions (again)

» Now three kinds of matching
1. Filename globbing
used on shell command line, and shell matches these
patterns to filenames that exist
used with the find command (quote from the shell)
2. Basic Regular Expressions, used with
- vi (use delimiter)
- more (use delimiter)
- sed (use delimiter)
- awk (use delimiter)
- grep (no delimiter, but we quote from the shell)
3. Extended Regular Expressions
- less (use delimiter)
- grep -E (no delimiter, but quote from the shell)
- perl regular expressions (not in this course)

Regex versus Globbing

» 1s a*.txt # this is filename globbing
- The shell expands the glob before the 1s command runs
> The shell matches existing filenames in current directory
beginning with 'a’, ending in ".txt'
» grep 'aa*' foo.txt # regular expression

- Grep matches strings in foo.txt beginning with 'a' followed
by zero or more 'a's

- the single quotes protect the *' from shell filename
globbing
» Be careful with quoting:

- grep aa* foo.txt # no single quotes, bad idea

- shell will try to do filename globbing on aa*, changing it into
existing filenames that begin with aa before grep runs: we don't

10

Extended versus Basic

» All of what we've officially seen so far, except
that one use of parenthesis many slides back,
are the Basic features of regular expressions

» Now we unveil the Extended features of
regular expressions

» In the old days, Basic Regex implementations
didn't have these features

» Now, all the Basic Regex implementations
we'll encounter have these features

» The difference between Basic and Extended
Regular expressions is whether you use a

backslash to make use of these Extended
features

11

Repeat preceding (Repetition)

*

\?

\+
\{n\}
\{n,\}
\{n,m\}

*

?

|

Zero or more times

Zero or one times

one or more times

n times, n is an integer

n or more times, n is an integer

at least n, at most m times, n and m are
integers

12

Alternation (one or the other)

» can do this with Basic regex in grep with -e
- example: grep -e 'abc' -e 'def' foo.txt
> matches lines with abc or def in foo.txt

» \ | is an infix "or" operator
» a\ |b means a or b but not both

» aa*\ |bb* means one or more a's, or one or
more b's

» for extended regex, leave out the \, asina|b

13

Precedence

» repetition is tightest (think exponentiation)

- xX* means X followed by x repeated, not xx
repeated

» concatenation is next tightest (think
multiplication)
- aa*\|bb* means aa* or bb*
» alternation is the loosest or lowest
nrecedence (think addition)

» Precedence can be overridden with
narenthesis to do grouping

14

Grouping

» \ (and \) can be used to group reqgular
expressions, and override the precedence
rules

» For Extended Regular Expressions, leave out
the \, as in (and)

» abb* means ab followed by zero or more b's

» a\ (bb\) *c means a followed by zero or
more pairs of b's followed by ¢

» abbb\ | cd would mean abbb or cd

» a\ (bbb\ |c\)d would mean a, followed by
bbb or c, followed by d

15

Precedence rules summary

grouping () or \(\) parentheses
brackets
repetition *or?or + or{n}or{n,} or {n,m} exponentiation
*or \?or \+ or \{n\} or \{n,\} or \{n,m\}
concatenation ab multiplication

alternation | or \| addition

16

Remove meaning of metacharacter

» To remove the special meaning of a meta
character, put a backslash in front of it

» * matches a literal *
» \. matches a literal .

» \\ matches a literal \
» \$ matches a literal $
» \A matches a literal A

» For the extended functionality,
- backslash turns it on for basic regex
- backslash turns it off for extended regex

17

Tags or Backreferences

» Another extended regular expression feature

» When you use grouping, you can refer to the
n'th group with \n

» \ (..*\)\1 means any sequence of one or
more characters twice in a row

» The \1 in this example means whatever the
thing between the first set of \ (\) matched
» Example (basic regex):

\ (aa*\)b\1l means any number of a's
followed by b followed by exactly the same
number of a's

18

Extended Regex Examples

» phone number
- 3 digits, optional dash, 4 digits
- we couldn't do optional single dash in basic regex

[[:digit:]]1{3}-2[[:digit:]]{4}
» postal code
- A9A 9A9
- Same as basic regex
[[:upper:]][[:digit]][[:upper:]] [[:digit:]][[:upper:]][[:digit:]]

» email address (simplified, lame)

(0]

- domain name cannot begin with digit or dash
[[:alnum:]_-1+@([[:alpha:]l[[:alnum:]-]+\.)+[[:alpha:]] +

19

mailto:someone@somewhere.com

Regular Expression Metacharacters

Any single character except newline
[..] Any character in the list
[*..] Any character not in the list
* Zero or more of the preceding item
A Start of the string or line
S End of the string or line
\< Start of word boundary
\> End of word boundary
\ () Form a group of items for tags
\n Tag number n
\{z\} Exactly n of preceding item
Nz, \} n or more of preceding item
\{n,m\} Between 1 and m of preceding item
\ The following single character is normal unchanged, , or
escaped. Note its use in
[a\-z], changing it from a to z into
a, - or Zz.

Extended metacharacters for egrep

+ One or more of the preceding item

? None or one (0 or 1) of the preceding item

| Separates a list of choices (logical OR)

(...) Form a group of items for lists or tags
\n Tag number n
{n} Exactly n of preceding item

{n,} n or more of preceding item

{n,m} |Between n and m of preceding item
Many of these also exist in Regular Expression-

mntensive languages like Per]l. But be sure to check

your environment and tools before usiﬂg any

UﬂUSUﬂl extensions.

R \

