
Processes 
 

1 



 elinks, mail 

 processes 

 nice 

 ps, pstree, top 

 job control, jobs, fg, bg 

 signals, kill, killall 

 crontab, anacron, at 

 

 

 

 

 

 

 

 

 

 

 

2 



 elinks is a text-based (character mode) web 
browser 

 we will use it to enable our scripts to retrieve 
web pages 

 in assignment 6, we use it to retrieve a 
weather webpage 

 elinks -dump -no-numbering -no-references <URL> 

 Example 

elinks -dump -no-numbering -no-references \ 

'http://weather.gc.ca/rss/city/on-118_e.xml'  

 Could grep this to extract information (maybe with –A option) 

3 



 use the mail command to send outgoing and 
read incoming email on the CLS 

 Sending outgoing email (bold font shows 
what the user types) 

$ mail username@example.com 

Cc: 

Subject: First Message from CLS 

This is a test message. 

^D 

$ 

 
4 



 text mode mail reader 

 incoming email is stored in 

 /var/spool/mail/<username> 

 use the mail command to read it 

 you'll see a list of messages, each preceded by a 
number (the header list) 

 enter a number to see that message 

 enter h to see the header list again 

 when you enter q, mail will quit and messages you 
read will be stored in ~/mbox 

 mail –f to see the messages in ~/mbox 

5 



 Any program we run executes as a process 

 Processes have the following attributes 
◦ a process id: PID 

◦ a parent process id: PPID 

◦ a nice number (related to priority) 

◦ controlling terminal 

◦ Real (RUID) and effective (EUID) user id 

◦ Real (RGID) and effective (EGID) group id 

 Also: 
◦ a current working directory 

◦ a umask value 

◦ an environment (values of environment variables) 

6 



 We have already been using the ps command 
to print out information about processes 
running on the system 

 ps –ef  or ps aux  piped to grep is common 

 there are many options for printing specific 
info in a specific way: man ps or ps -h 

 ps –l # long format 

 ps –f versus ps –fw 

 

 

7 



 top displays some system information, and a 
list of processes, ordered on a column 

 the most important keys are ?, h, and q 
(according to man page) 

 load average: 5min, 10min, 15min 

 load average is number of processes running 
or in uninterruptable state (disk IO, others) 

 no exact rule, but if load average is more 
than 1-1.5 times the number of CPUs, the 
machine is overloaded in some way and you 
have a problem (your mileage may vary) 

8 



 pstree: connects parents and children in a 
pictorial display 

 free: memory usage 

 vmstat: processes, memory, and more 

9 



 Runnable: ready to go 

 Sleeping: choosing not to go 

 Stopped: suspended indefinitely, as in ^Z 

 Uninterruptable Sleep: waiting on a disk I/O 
operation, or similar 

 Zombie or Defunct: process has completed, 
but it's still in the process table waiting for 
parent to take action 

10 



 Each process has a priority, which you can 
control with the nice command 

 -20 highest priority, 19 lowest priority 

 nice [–n increment] command 

 nice –n 10 long_command  # 10 is default 

 only superuser can specify negative 
increments 

 For processes already running: 
◦ renice priority –p PID or renice –n priority –p PID 

11 



 your shell can run several processes for you 
at once 

 we can run commands in the background 
◦ command & 

 we can put a running command in the 
background 
◦ ^Z 

 what jobs are there?  
◦ jobs 

 resume a stopped job  
◦ bg %N      # background, where N is a job number 

◦ fg %N       # foreground 

 

 

 

12 



 When we type ^C when a process is running 
in the foreground, the process receives a 
SIGINT signal, which by default would cause a 
process to terminate. 

 SIGINT: ^C (default), similar to SIGTERM 

 SIGHUP: terminal has been closed 

 SIGTERM: clean up if necessary, then die 

 SIGKILL: die right now 

 We can send these signals to a process with 
the kill command 

 

 

 
13 



 kill –SIGNAL PID  #send SIGNAL to process PID 

 When system shuts down, it  
◦ sends all processes a SIGTERM 

◦ waits a few seconds (5 or 10) 

◦ sends all processes a SIGKILL 

 Why not just wait for the SIGTERM to finish? 

 Because SIGTERM can be handled, possibly 
ignored, it's optional 

 SIGKILL cannot be handled – it works unless 
the process is in an uninterruptible state 
(maybe disk I/O, NFS) 

 

14 



 If kill -9 PID (kill –SIGKILL PID) as root doesn't 
kill the process, it is in an uninterruptible 
state 

 if uninterruptible processes don't become 
interruptible, there may be a system problem 
(bad disk, misconfigured NFS filesystem, etc) 

 Reboot may be the only way to get rid of 
them 

15 



 summary of all the POSIX signals: 
http://en.wikipedia.org/wiki/Unix_signal 

 

16 



Signals and the TRAP statement  

• Various signals can be trapped and your own script 

code executed instead of the system's normal code. 

Although there are up to 64 signals available, we will 

consider only a few of them: 

 SIGHUP  (signal 1 or HUP: hang up) is issued for a 

remote connection when the connection is lost or 

terminated; it's also used to tap a daemon on the 

shoulder, to re-read its config files. 

 SIGINT  (signal 2 or INT) is the keyboard interrupt signal 

given by Control-C. 

 SIGKILL (signal 9 or KILL) cannot be ignored or 

trapped. 

 SIGTERM (signal 15 or TERM) is the default signal 

used by kill(1) and killall(1). 

17 



Signal-like events and TRAP  
 The EXIT event (also "signal" 0) occurs upon exit from 

the current shell. 

 The DEBUG event takes place before every simple 

command, for command, case command, select 

command, and before the first command in a function. 

See also the description of extdebug  for the shopt 

built-in for details of its effect.   

 The ERR event takes place for each simple command 

with a non-zero exit status, subject to these conditions:  

it is  not executed if the failed command is part of a 

while, until, or if condition expression, or in a && or || 

list, or if the command’s return  value  is  being inverted  

via !. See also errexit for details.   

 The RETURN event occurs each time a shell function or 

a script executed with the . (that's a dot) or source built-

in returns to its caller. 
18 



Signals and the TRAP statement 

 You can set a trap: 

   trap 'statement; statement; …' event-list 

 The trap statement list is read by the shell twice, first 
when it's set (it's set once only, before it is to be used, 
and stays active until you clear it). 

 It's read a second time when it's executed.  

 If you enclose the statement in single quotes, 
substitutions only take place at execution time.  

 If you use double quotes, substitutions will take place 
upon both readings.  

 If statement is omitted, the signals (use - (dash)) for all) 
are reset to the default. 

 If statement is a null (empty) string, the signals specified 
will be ignored. 

19 



Signals and the TRAP statement 
 To set a trap for SIGINT: 

   trap 'statement; statement; …' INT 

 To turn it off again: 

  trap INT 

 To prevent any SIGINT handling (ignore signals): 

  trap " " INT 

 Be cautious in trapping SIGINT: how will you stop a run-
away script? 

 To see what traps are set (you can see traps for specific 
events by listing the names or numbers): 

  trap -p 

 To list the names for signals 1 to SIGRTMAX:  

  trap -l # that's an ell, not a one  

20 



Trap Sample Script 
#!/bin/sh -u 

count=0 

 

# set trap to echo, then turn itself off 

trap 'echo -e \\nSIGINT ignored in $count; ' SIGINT 

 

# loop for a while 

while (( count < 10 )); do 

    (( count++ )) 

    read -p "$count loop again? " response 

done 

 

# if loop ends, display count 

echo loop count $count 

exit 0 

21 



System Prompt$ ./traptest 

1 loop again?  

2 loop again?  

3 loop again?  

4 loop again? y 

5 loop again? n 

6 loop again?  

7 loop again? q 

8 loop again? help 

9 loop again? ^C 

SIGINT ignored in 9 

 

10 loop again? q 

11 loop again? y 

12 loop again? n 

13 loop again? ^C 

System Prompt$ 
22 



 To run a command regularly and 
automatically, we use the cron facility 

 The cron daemon process every minute 
checks to see if commands specified in 
crontab files need to be run 

 for now, we're concerned only with our user 
crontab files, which are 
◦ /var/spool/cron/* 

◦ for example, /var/spool/cron/user1 is user1's 
crontab file 

 

23 



 full details from man 5 crontab 

◦ recall that is how we read section 5 of the manual (section 5 of the 
manual is file formats) 

 man crontab will give info about the crontab command (in 
default section 1 of the manual) 

 create a file containing your cron instructions (see next slide), 
naming that file, say, myuser.crontab 

 run the crontab command to submit that file's contents to be 
your user's crontab file: crontab < myuser.crontab 

 alternatively, you can edit your user's live crontab file: 
crontab -e 

24 



• All fields must contain a value of some valid kind 

• Field are separated by one or more spaces 

• Asterisk (*) indicates the entire range 

# .---------------- minute (0 - 59) 

# |   .------------- hour (0 - 23) 

# |   |   .--------- day of month (1 - 31) 

# |   |   |   .------ month (1 - 12) 

# |   |   |   |   .--- day of week (0 – 7, both 0 and 7 are Sunday) 

# |   |   |   |   | 

  0  6   1  *  *  /home/user/bin/mycommand 

  1  6  15  *  *  /home/user/bin/anothercommand > /dev/null 2>&1 

crontab format (man 5 crontab) 

25 



 ranges with dash are allowed: first-last 

 * means every value first-last 

 lists are allowed: first,second,third 

 steps indicated with '/' are allowed after 
ranges or asterisk: 
◦ */2 means every second one 

◦ 1-7/2 means 1,3,5,7 

26 



 crontab –l 
◦ list the contents of your current live crontab file 

 crontab –e 
◦ edit the contents of your current live crontab file 

 crontab 
◦ read the new contents of for your crontab file from 

stdin 

 crontab –r 
◦ remove your current crontab file 

27 



 see man 5 crontab for example crontab 

 really, see the example: man 5 crontab 

 things to watch out for 
◦ input for your commands (they run without anyone to type 

input) 

◦ output of commands (if you don't (re)direct output, the 
output will be emailed – better if you handle it) 

◦ error output of commands (same as for output above) 

◦ summary: it's best if your commands in a crontab are 
arranged with input and output already handled, not relying 
on output to be emailed by cron 

◦ if you want to email, do it explicitly in your command 
somehow, and test that command before putting it into 
your crontab 

28 



 at command runs a set of commands at a later time 
 at command takes a TIME parameter and reads the set of 

commands from standard input 

 example (run commands at 4pm 3 days from now) 

◦ at 4pm + 3 days 

   rm –f /home/usr/foo 

   touch /home/usr/newfoo 

   ^D 

 other at-related commands: atrm, atq 

 for details: man at 

 as with cron, you must be aware of how your 
commands will get their input (if any) and what will 
happen to their output (if any) 

29 


