
CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

This is Lab Worksheet 9 - not an AssignmentThis is Lab Worksheet 9 - not an Assignment
This Lab Worksheet contains some practical examples that will prepare you to complete your Assignments.
You do not have to hand in this Lab Worksheet. Make sure you complete the separate Assignments on time.
Quizzes and tests may refer to work done in this Lab Worksheet; save your answers.

Before you get started - REMEMBER TO READ ALL THE WORDS
You must have your own Fedora 12 virtual machine (with root permissions) running to do Part 2 of this lab.
You cannot do Part 2 on the Course Linux Server because you do not have root permissions on that machine.
Only Part 2 requires root permissions. Part 1 and Part 3 can be done on the Course Linux Server.

Linux File System Permissions (modes) - Part 1Linux File System Permissions (modes) - Part 1

Commands, topics, and features covered
Use the on-line help (man command) for the commands listed below for more information.

➢ chmod – (change mode) Change the permissions (mode) on an existing inode (file, directory, etc.)
➢ chown – (change owner) Change the owner and/or group of an existing inode (needs root privilege)
➢ id [user] – (identity) Display account userid and all groups
➢ ls -lid – (list structure, long version, inode, directory) See the permissions of an inode
➢ su [-] [user] – (substitute user) Become another user (default root), with that user's permissions
➢ umask [value] – (user mask - shell built in) Display or change the octal umask value for this shell
➢ useradd userid – create a new login user account named userid with home directory
➢ whoami – (who am I?) Display current account userid

Correct user, command lines, and command output
• Parts of this lab are done as different ordinary, non-root users. Other parts are done as the root user.

Pay attention to which part is done by which user. Your prompt will tell you if you are the root user by
changing to include a # characcter instead of a $ character. You can also use the commands id or
whoami to show your current userid.

• Some answer blanks require you to enter command lines. Do not include the shell prompt with your
command lines. Give only the part of the command line that you would type yourself.

• Make sure you know the difference between a command line (which is what you type into the shell) and
command output (which is what the command displays on your screen).

New command: su (substitute user or set userid)
The su command is a privileged (setuid) program that lets you start up a shell (or other command) with the
permissions of another user, if you know the password of that user (or if you are the super-user). Unless you are
the root super-user, you will have to supply the password of the account you are trying to become. With no
userid specified, the command presumes you want to become the root super-user and you will be prompted for
your root password.

➢ su [options] [userid] (a favourite option is --login or -l or just -)

A common option is --login that ensures that the shell, environment, and working directory you get is started
as if the user had just logged in. Without --login, you retain your current environment and working directory
and only your effective userid and group change to that of the new account. Use --login if you are trying to
simulate what a full login would look like for that user. If you only need the permissions of the user, but not the
login environment and working directory, omit the --login option. Most use of su does not use --login.

Page 1 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

Viewing Permissions (modes) with the ls -l command
Permissions are stored in each inode. They control who is allowed to access and modify a file system object
(inode) such as a file or directory. Another word for permissions is mode, and the command chmod that
changes permissions is an abbreviation of "change mode". Only the owner of an inode can change its mode.
We often casually say "file" permissions, but permissions apply to each inode whether file, directory, or other.

There are nine permissions altogether, three sets of three read/write/execute permissions: one set for the inode's
user/owner, one set for the group, and a third set for all other users. When performing a long directory listing,
ls –l, the inode's permissions (mode) appear as nine characters (three sets of read/write/execute) in the first
field (column) of each output line, after the inode's type indicator character. The second field in the output is a
link count. The third field is the user/owner of the inode. The fourth field is the group to which the inode
belongs. The fifth field is the date/time the inode was modified. The last field is a name for the inode. (Inodes
may have multiple names.) If you use the -i option, the inode numbers appear at the start (left) of the output
lines:

[user@host]$ ls -il
555 -rw-r----- 3 user1 group1 123 Nov 12 14:14 fileone
928 drwxrwxr-x 2 user1 group1 4096 Nov 12 14:14 directoryone
382 lrwxrwxrwx 1 root root 30 Oct 13 12:39 symlink -> ../some/place

Above, inode 555 is a plain file named fileone owned by user1 and in group group1 with size 123 and
link count of 3. Inode 928 is a directory named directoryone and a inode 382 symbolic link named
symlink. The permissions and owners of symbolic links are ignored; all that matters are the permissions on
the inode being linked to. Symbolic links allow directories to appear to have multiple names.

The "inode type" character

The first character before the nine permission characters identifies the type of the inode that this name is
attached to. The three most common inode types are:

• - (a hyphen/minus/dash) for a regular file inode
• d for a directory inode
• l (lower-case L) for a soft or symbolic link (soft link) linking to a pathname (not to an inode!)

In the example above, fileone is typed as a regular file (the type character is a leading '-');
directoryone is a directory (a leading 'd'); symlink is a symbolic link (a leading 'l') that points to
pathname ../some/place The permissions and owners of symbolic links are ignored; all that matters are
the permissions on the inode being linked to.

Three sets of three permissions: 3 user/owner, 3 group, and 3 other

The nine characters following the type character show the three sets of three read/write/execute access
permissions that apply to user/owner, group, and other. Each of the three sets contains three characters
indicating which of these three permissions is allowed for each set:

• r means read permission (can access the content of the inode)
• w means write permission (can change the content of the inode)
• x means execute permission for files and search permission for directories

The three characters are always written as three in rwx order. In a set of three permission characters, a
hyphen/minus/dash character '-' replaces a letter if the corresponding permission is not granted, e.g. rw-

555 -rw-r----- 1 user1 group1 123 Nov 12 14:14 fileone

After the inode type character (a dash means a plain file), the first three characters of the nine-character mode
are the r,w,x permissions that apply to the user (owner) of the inode. Above, fileone has mode rw-

Page 2 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

(read, write, NO execute) for user1. The second three characters r-- are the r,w,x permissions that apply to
users who are not the owner but are in the same group as the inode; the last three characters --- are the
r,w,x permissions that apply to everyone else (people who are not the user/owner and are not in the group). A
hyphen/minus/dash in any of the three positions means NO permission, so "---" means that others have no
read, no write, and no execute (no permissions at all) on this file inode.

Symbolic (letter) and numeric (octal) permissions (mode)

Permissions (mode) can be represented in two ways: symbolic (three letters) or numeric (one octal digit). The
single octal digit represents the three symbolic letters using a numeric weighting scheme shown below. The
permission is treated as a binary number, with zeroes taking the place of the dashes:

• Numeric weighting for each of the three r,w,x permissions (three binary digits to one octal digit):
◦ r (read) r-- has binary weight 100(base 2) = 22 = 4(octal)

◦ w (write) -w– has binary weight 010(base 2) = 21 = 2(octal)

◦ x (execute) --x has binary weight 001(base 2) = 20 = 1(octal)

Each of the three sets of symbolic permissions (user/owner, group, other) can be summarized by a single octal
digit by adding up the three numeric rwx values using the three weights (4,2,1) given above:

• Example 1: rwx corresponds to digit 7 because r is 4, w is 2, and x is 1 so 4+2+1=7
• Example 2: r-x corresponds to digit 5 because r is 4 and x is 1 so 4+0+1=5
• Example 3: -wx corresponds to digit 3 because w is 2 and x is 1 so 0+2+1=3
• Example 4: --- corresponds to digit 0 because no permissions are set so 0+0+0=0

The full set of nine permission characters can then be grouped and summarized as three octal digits:

• Example 5: rwxr-x-wx is rwx|r-x|-wx and corresponds to the three digits 753
• Example 6: ---r----x is ---|r--|--x and corresponds to the three digits 041
• Example 7: --------- is ---|---|--- and corresponds to the three digits 000
• Example 8: rwxrwxrwx is rwx|rwx|rwx and corresponds to the three digits 777

Make sure you always write exactly nine characters when writing symbolic permissions. Exactly nine. Do not
include the leading "inode type" character when listing the nine characters of symbolic permissions.

Changing permissions with the chmod command
Change permissions of an inode using the chmod (change mode) command:

➢ chmod mode pathnames...

Supply at least two arguments:
1. one permission ("mode") argument (that may contain multiple permissions) and
2. one or more pathnames of inodes for which the access permissions are to be set or modified

Only the user/owner of an inode (and the super-user) can change its permissions. Examples:

• chmod u=rwx,g=rx,o=wx pathname (set inode to rwxr-x-wx or 753 octal)
• chmod 753 pathame (set to 753 or rwxr-x-wx symbolic)
• chmod u+r pathame (add user/owner read permissions; leave others untouched)
• chmod go-rwx pathame (remove all permissions for group and others)

Note that adding and removing permissions only works for symbolic permissions and only affects the given
permission and doesn't change any of the other permissions. Octal permissions always affect all the permissions.

Page 3 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

1 Exercise: Conversion between symbolic mode and octal mode
For each nine-character symbolic permission, give the equivalent three-digit octal permission and the symbolic
permissions that apply to each of User/Owner, Group, and Other:

Row Symbolic Mode Octal Mode User/Owner Group Other

1. rwxrw-r-x _ _ _ _

2. r---wx-w- _ _ _ _

3. --x------ _ _ _ _

2 Exercise: Conversion between octal mode and symbolic mode
For each three-digit octal permission, give the equivalent nine-character symbolic permission and the symbolic
permissions that apply to each of User/Owner, Group, and Other:

Row Octal Mode Symbolic Mode User/Owner Group Other

1. 000 _ _ _ _

2. 001 _ _ _ _

3. 020 _ _ _ _

4. 300 _ _ _ _

5. 004 _ _ _ _

6. 050 _ _ _ _

7. 600 _ _ _ _

8. 007 _ _ _ _

9. 715 _ _ _ _

Did you read all the words before completing the above exercise? Symbolic or numeric? Read all the words.

Page 4 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

3 Exercise: Understanding directory permissions
This exercise chooses eight different permissions for a directory and then for each of the eight permissions
attempts some basic commands such as cd, touch, mkdir, and ls. Different permissions will allow or deny
each of these actions. You are to set the permissions, try each of the actions, and record whether or not it
worked. Are the results as you would expect?

A) While logged in as a regular user, execute the following three commands to create a testing directory:

[user@host]$ cd ; rm -rf lab09 ; mkdir -p lab09/top ; cd lab09

For each row of the table below, repeat these next two steps (B and C) that will set some permissions on the
top directory and then try four commands to see if those commands work with those directory permissions:

B) From in the lab09 directory change the permission of the top directory using the chmod command
given in the second column (Command line) of the table. Execute this chmod command in the lab09
directory to set the permissions on the top subdirectory.

C) Next, for the row and permission value you just set in Step A, try to execute the four commands listed
across the top of the table. For each of the four commands, record in the table whether or not the
command line executes successfully. Enter in the table PD for Permission Denied; OK for success.
The four commands to try are these (also listed across the top of the table):

1. cd top followed immediately by "cd .." only if it worked (gave no error messages)
You need to "cd .." to get back up to the lab09 directory only if the cd command worked.

2. touch top/file followed immediately by "rm top/file" if it worked
3. mkdir top/dir followed immediately by "rmdir top/dir" if it worked
4. ls -l top

• You will carry out Steps B and C above (one chmod and four other commands) for each of the rows of
the table below. Do the chmod, then try each of the four commands and record PD or OK.

• Before you run each chmod command in the table below, ensure your current directory is lab09.
• If the cd into top works (no error), follow it immediately with "cd .." to return up to the lab09

directory again, otherwise you will be in the wrong directory for the next command in the table.
• If the touch works (no error), immediately remove the file you just created.
• If the mkdir works (no error), immediately remove the directory you just created.

Table of OK and PD for different values of chmod permissions
Row Command line cd top touch top/file mkdir top/dir ls -l top
1. chmod 000 top _ _ _ _
2. chmod 100 top _ _ _ _
3. chmod 200 top _ _ _ _
4. chmod 300 top _ _ _ _
5. chmod 400 top _ _ _ _
6. chmod 500 top _ _ _ _
7. chmod 600 top _ _ _ _
8. chmod 700 top _ _ _ _

Did you read all the words before completing the above exercise? Your table must contain only OK or PD. If
you see any other error such as "no such file or directory", you are not in the correct lab09 directory when
you are running that command.

Page 5 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

4 Exercise: Minimum Permissions for common file operations
In the table below, give in symbolic rwx form the minimum permissions a non-root user requires to
successfully complete the commands listed in the left column below. "Minimum" means the least amount of
rwx permissions needed. How many of rwx can you take away and still perform the given command
successfully? Test your guess to make sure you are correct.

Recall that directories store only names and inode numbers, not data. Recall that some commands require
permissions on the directory; some require permissions on the data; some require both.

1. [user@host]$ cp srcdir/srcfile targetdir/
2. [user@host]$ mv srcdir/srcfile targetdir/
3. [user@host]$ ln srcdir/srcfile targetdir/
4. [user@host]$ rm srcdir/srcfile
5. [user@host]$ cat srcdir/srcfile
6. [user@host]$ date >> dir/oldfile (modify an existing file)
7. [user@host]$ date > dir/newfile (create a new file in an existing directory)

For commands 6 and 7 above, the directory is not a "source" directory since nothing is being read from it, and
the file is not a "source" file since it is being written to (it is an output target). Use the first two columns in the
table below to record permissions for the directory and the target file for 6 and 7 above.

Table of MINIMUM rwx symbolic permissions needed to perform each of the above commands

Command used on the (source) directory on the (source) file on the target directory

1. copy a file _ _ _

2. move a file _ _ _

3. link to a file _ _ _

4. delete a file _ _ N/A

5. read a file _ _ N/A

6. modify an existing file _ _ N/A

7. create a new file _ N/A N/A

Now go back and read all the words of this question, including the word "symbolic" in the first line.
Make sure all the answers are the minimum permissions needed to do the given operation. (You could not
remove any more of the given permissions and still have the operation work.)

Page 6 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

Linux File System Permissions - Part 2Linux File System Permissions - Part 2

You must have your own Fedora 12 virtual machine (with root permissions) running to do Part 2 of this lab.
You cannot do this work on the Course Linux Server because you do not have root permissions on that
machine.

Obtain a root (super-user) prompt
For this section, you will need to obtain a root (super-user) prompt so that you'll have the required privilege
level to run the account creation commands. The root account is the only account with sufficient permissions
to use these commands. To obtain a root prompt, use the Substitute User command, as follows:

1. Log in to Fedora Linux as your regular user account (non-root).
2. Open a terminal window running a shell (Applications-->System Tools-->Terminal).
3. On the shell command line, issue the Substitute User command su followed by a space and the option

--login (there is a shorter synonym for --login that you can also use if you RTFM):

 [user@host ~]$ su --login

Enter the root password for your Fedora machine root account when prompted. Your shell prompt will change
from dollar “$” to number sign “#”, indicating you now have root super-user privileges. Type the whoami or
id command to confirm that you are now the root user; the output should be: root After a full login, your home
directory will also change to be the root home directory; type pwd to confirm.

1 Create two new non-root user accounts
For this section you will require two more ordinary user (non-root) accounts. To create the two accounts follow
these steps below (you need root privileges to create accounts - become the root user first):

1. [root@host]# useradd homer
The above creates a new "homer" login account and home directory. The account has no password yet.

2. [root@host]# passwd homer
The above sets homer's password. If you do not type the username after the passwd command, you are
changing the password of the account that you are signed in with (i.e. root!). Do not change your root
password! Change homer's password.

3. Repeat the above steps to create another account named flanders and give it the same password.
4. Record the account information for the two new accounts by typing: id homer ; id flanders

5. Give the absolute pathname of the flanders account home directory: ______________________
6. Give the numeric permissions of the above home directory: ___________________________

2 Creating a Public Directory in the system ROOT
We will create a public directory in which any user can create files. The directory will allow any user to create
names in it (or remove names). Recall that the permissions on a directory are not the same as the permissions on
the inodes named in the directory. Permission to change names does not grant permission to change content.

1. With root privileges create a directory called public under the ROOT directory: /public (NOT
/root/public) and record the command line: ___

2. Give a command line that will show the permissions of only the new /public directory:

3. What are the current numeric permissions for the /public directory: _______________________
4. Record the owner and group of the /public directory: ________________________________

Page 7 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

5. Give /public full access permissions for everybody and record the exact command line you used:

6. What are the resulting changed numeric permissions for /public: ________________________

3 Using the Public Directory
In the next steps, where command lines are required, do each command and record the command line used:

1. What command line lets you become the flanders user: ______________________________
2. What command verifies that you are currently the flanders user: ________________________
3. What command line creates a new file /public/flanfile: ___________________________
4. Record the owner and group of the new flanfile file: _______________________________
5. What are the current numeric permissions for flanfile: _____________________________
6. What command line removes (only) all other permissions from /public/flanfile and does not

change any existing user or group permissions: ______________________________________
7. What are the resulting numeric permissions for flanfile: _____________________________
8. As user flanders, append the date to the new flanfile file. Record the full command line here:
__
9. What command line shows that the size of flanfile is 29 bytes: _________________________
10. As the homer user, try to display the contents of the flanfile file and record the error message:

11. As the homer user, rename the flanfile file owned by flanders to have the new name foo, and give

the output of ls -il /public/foo showing that the renamed foo file is still owned by flanders :

12. As the homer user, remove the name foo for the file owned by flanders. Why can you both rename

and then delete this file that you don't own and can't read? (Hint: Names store separately from content.)
__
__

4 Changing ownership with chown
The command that changes the owner and/or group of a file system object is: chown
Only the root user can change the owner of an object. You can change both the owner and the group by
separating the two with a colon character, e.g. chown idallen:staff mydir and you can change just
the owner by leaving off the colon and the group, e.g. chown idallen mydir and you can change just the
group by leaving off the owner, e.g. chown :staff mydir (note the leading colon character).

With root privileges, create an empty file and then change the owner and group to homer and homer:

[root@host]# touch /public/foo ; chown homer:homer /public/foo

a) Give the output of ls -il /public/foo showing the homer homer owner and group:
__

b) Become the flanders user and try to append the date to /public/foo. Can you do it? ______
c) Become the homer user and try to append the date to /public/foo. Can you do it? ________
d) As root, set (only) the group and group permissions so that both homer and flanders can read and

write foo but others cannot. (The idea is that the owner of the file will read and write the file using the
owner permissions, and the non-owner will be in the group of the file and so group permissions will
apply, allowing access. Other users will be neither the owner of the file nor in the group of the file, so
"other" permissions will apply to them.) Test it as both users.
Give the output of ls -il /public/foo:
__

Page 8 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

CST8207: GNU/Linux Operating Systems I Lab Worksheet Nine Linux File System Permissions

Linux File System Permissions - Part 3Linux File System Permissions - Part 3

Shell umask and permissions for new files and directories
The shell umask value restricts the permissions given to new files and directories when they are first created.
Without the umask value, or with a zero value, a new file would be created with full permissions 666 and a new
directory with full permissions 777. The umask masks out permissions - each bit of the umask turns off the
corresponding permission in the newly created file or directory. A umask value of of 777 turns off all
permissions on new files and directories; a umask of 000 doesn't turn off any permissions (not recommended!).

Note that masking is not the same as subtracting, e.g. 666 masked with 001 is still 666 and 666 masked
with 003 is 664. The mask turns off permission bits. If they are already off, the umask makes no change:

• rw- (6) masked with --x (1) is rw- (6) because the x bit in the mask does not change any permissions
• rw- (6) masked with -wx (3) is r-- (4) because only the w bit is changed (turned off) by the mask

Each process, and thus each shell, has its own umask value. Different Linux distributions set different default
(at login) umask values. The values in your particular distribution of Linux may not be the same as other
distributions. The values set by the system administrator may differ from the distribution defaults. Do not rely
on the umask having any standard value.

a) What built-in shell command displays or sets the umask value: ______________
b) What option to the su command does a full "login shell" login: ______________
c) Give the default (at full login) umask for an ordinary user account in Fedora 12: ____________
d) Give the default (at full login) umask for the root account in Fedora 12: __________________

 For each row of the following table set the given umask and then fill in the four new permission columns:

e) Set and use the given umask in column two before filling in the permissions in the rest of the row.
f) Based on the umask in column two, write down the permissions that would be given to a new file and

a new directory. Give both the symbolic and numeric forms. You can create a new file and a new
directory to verify your answer, but you should calculate and know the answer without needing to create
anything. Using the given umask, what would be the permissions set on a new file and a new directory?

Row

Set your umask to this
value and then fill in

the fields on the right:

create new file permissions create new directory permissions

symbolic numeric symbolic numeric

1. umask 0001 _ _ _ _

2. umask 0002 _ _ _ _

3. umask 0003 _ _ _ _

4. umask 0022 _ _ _ _

5. umask 0077 _ _ _ _

6. umask 0777 _ _ _ _

After you are finished the above exercise, exit your shell or reset your umask back to the normal umask. Do
not continue to use a shell that has a umask of 0777.

7. True or False - the umask can change the permissions of existing files and directories? __________
8. What command name changes the permissions of existing files and directories: __________
9. What value umask gives the owner and group full permissions on new files and directories: _____
10. What value umask gives only the owner full permissions on new files and directories: _______

Page 9 of 9
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet09.odt

Version 12 10/25/2012, 08:33:01

