
CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

Student Name: ______________________________ Lab Section: ______

Linux File System Permissions (modes) - Part 1Linux File System Permissions (modes) - Part 1

Due Date - Upload to Blackboard by 8:30am Monday March 12, 2012
Submit the completed lab to Blackboard following the Rules for submitting Online Labs and Assignments.
You must upload two files for this submission. You must always upload both files when you submit. Both.

Commands, topics, and features covered
Use the on-line help (man command) for the commands listed below for more information.

➢ ls -lid – (list structure, long version, inode, directory) See the permissions of an inode
➢ chmod – (change mode) Change the permissions (mode) on an existing inode (file, directory, etc.)
➢ chown – (change owner) Change the owner and/or group of an existing inode (needs root privilege)
➢ umask [value] – (user mask - shell built in) Display or change the octal umask value for this shell
➢ su [-] [user] – (substitute user) Become another user (default root), with that user's permissions
➢ whoami – (who am I?) Display current account userid
➢ id [user] – (identity) Display account userid and all groups
➢ useradd userid – create a new login user account named userid with home directory

Correct user, command lines, and command output
• Parts of this lab are done as different ordinary, non-root users. Other parts are done as the root user.

Pay attention to which part is done by which user. Your prompt will tell you if you are the root user.
• Some answer blanks require you to enter command lines. Do not include the shell prompt with your

command lines. Give only the part of the command line that you would type yourself.
• Make sure you know the difference between a command line (which is what you type into the shell) and

command output (which is what the command displays on your screen).

Viewing Permissions (modes) with the ls -l command
Permissions are stored in each inode. They control who is allowed to access and modify a file system object
(inode) such as a file or directory. Another word for permissions is mode, and the command chmod that
changes permissions is an abbreviation of "change mode". Only the owner of an inode can change its mode.
We often casually say "file" permissions, but permissions apply to each inode whether file, directory, or other.

There are nine permissions altogether, three sets of three read/write/execute permissions: one set for the inode's
user/owner, one set for the group, and a third set for all other users. When performing a long directory listing,
ls –l, the inode's permissions (mode) appear as nine characters (three sets of read/write/execute) in the first
field (column) of each output line, after the inode's type indicator character. The second field is a link count.
The third field is the user/owner of the inode. The fourth field is the group to which the inode belongs. The
fifth field is the date/time the inode was modified. The last field is a name for the inode. (Inodes may have
multiple names.) If you use the -i option, the inode numbers appear at the start (left) of the output lines:

[user@host]$ ls -il
555 -rw-r----- 3 user1 group1 123 Nov 12 14:14 fileone
928 drwxrwxr-x 2 user1 group1 4096 Nov 12 14:14 directoryone
382 lrwxrwxrwx 1 root root 30 Oct 13 12:39 symlink -> ../some/place

Above, inode 555 is a plain file named fileone owned by user1 and in group group1 with size 123 and
link count of 3. Inode 928 is a directory named directoryone and a inode 382 symbolic link named

Page 1 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

 /3
marks

http://teaching.idallen.com/cst8207/12w/notes/000_submission_rules.html

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

symlink. The permissions and owners of symbolic links are ignored; all that matters are the permissions on
the inode being linked to. Symbolic links allow directories to appear to have multiple names.

The "inode type" character

The first character before the nine permission characters identifies the type of the inode that this name is
attached to. The three most common inode types are:

• - (a hyphen/minus/dash) for a regular file inode
• d for a directory inode
• l (lower-case L) for a soft or symbolic link (soft link) linking to a pathname (not to an inode!)

In the example above, fileone is typed as a regular file (the type character is a leading '-');
directoryone is a directory (a leading 'd'); symlink is a symbolic link (a leading 'l') that points to
pathname ../some/place The permissions and owners of symbolic links are ignored; all that matters are
the permissions on the inode being linked to.

Three sets of three permissions: 3 user/owner, 3 group, and 3 other

The nine characters following the type character show the three sets of three read/write/execute access
permissions that apply to user/owner, group, and other. Each of the three sets contains three characters
indicating which of these three permissions is allowed for each set:

• r means read permission (can access the content of the inode)
• w means write permission (can change the content of the inode)
• x means execute permission for files and search permission for directories

The three characters are always written as three in rwx order. In a set of three permission characters, a
hyphen/minus/dash character '-' replaces a letter if the corresponding permission is not granted, e.g. rw-

555 -rw-r----- 1 user1 group1 123 Nov 12 14:14 fileone

After the inode type character (a dash means a plain file), the first three characters of the nine-character mode
are the r,w,x permissions that apply to the user (owner) of the inode. Above, fileone has mode rw-
(read, write, NO execute) for user1. The second three characters r-- are the r,w,x permissions that apply to
users who are not the owner but are in the same group as the inode; the last three characters --- are the
r,w,x permissions that apply to everyone else (people who are not the user/owner and are not in the group). A
hyphen/minus/dash in any of the three positions means NO permission, so "---" means that others have no
read, no write, and no execute (no permissions at all) on this file inode.

Symbolic (letter) and numeric (octal) permissions (mode)

Permissions (mode) can be represented in two ways: symbolic (three letters) or numeric (one octal digit):

• Symbolic mode (letters), e.g. rwx or r-x or r--
◦ r (read)
◦ w (write)
◦ x (execute/search)

• Numeric, absolute, or octal mode, e.g. 7 or 5 or 4
◦ r (read) r-- is 100(base 2) = 22 = 4(octal)

◦ w (write) -w– is 010(base 2) = 21 = 2(octal)

◦ x (execute) --x is 001(base 2) = 20 = 1(octal)

Each of the three sets of symbolic permissions (user/owner, group, other) can be summarized by a single octal
digit by adding up the three numeric rwx values using the three weights (4,2,1) given above:

Page 2 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

• Example 1: rwx corresponds to digit 7 because r is 4, w is 2, and x is 1 so 4+2+1=7
• Example 2: r-x corresponds to digit 5 because r is 4 and x is 1 so 4+0+1=5
• Example 3: -wx corresponds to digit 3 because w is 2 and x is 1 so 0+2+1=3
• Example 4: --- corresponds to digit 0 because no permissions are set so 0+0+0=0

The full set of nine permission characters can then be grouped and summarized as three octal digits:

• Example 5: rwxr-x-wx is rwx|r-x|-wx and corresponds to the three digits 753
• Example 6: ---r----x is ---|r--|--x and corresponds to the three digits 041
• Example 7: --------- is ---|---|--- and corresponds to the three digits 000
• Example 8: rwxrwxrwx is rwx|rwx|rwx and corresponds to the three digits 777

Make sure you always write exactly nine characters when writing symbolic permissions. Exactly nine. Do not
include the leading "inode type" character when listing the nine characters of symbolic permissions.

Changing permissions with the chmod command
Change permissions of an inode using the chmod (change mode) command:

➢ chmod mode pathnames...

Supply at least two arguments:
1. one permission ("mode") argument (that may contain multiple permissions) and
2. one or more pathnames of inodes for which the access permissions are to be set or modified

Only the user/owner of an inode (and the super-user) can change its permissions. Examples:

• chmod u=rwx,g=rx,o=wx pathname (set to rwxr-x-wx or 753 octal)
• chmod 753 pathame (set to 753 or rwxr-x-wx symbolic)
• chmod u+r pathame (add user/owner read permissions)
• chmod go-rwx pathame (remove all permissions for group and others)

Note that adding and removing permissions only work for symbolic permissions and only affect the given
permission and don't change any of the other permissions. Octal permissions always affect all the permissions.

1 Exercise: Conversion between symbolic mode and octal mode
For each nine-character symbolic permission, give the equivalent three-digit octal permission and the symbolic
permissions that apply to each of User/Owner, Group, and Other:

Row Symbolic Mode Octal Mode User/Owner Group Other

1. rwxrw-r-x _ _ _ _

2. r---wx-w- _ _ _ _

3. --x------ _ _ _ _

2 Exercise: Conversion between octal mode and symbolic mode
For each three-digit octal permission, give the equivalent nine-character symbolic permission and the symbolic
permissions that apply to each of User/Owner, Group, and Other:

Row Octal Mode Symbolic Mode User/Owner Group Other

1. 000 _ _ _ _

2. 001 _ _ _ _

Page 3 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

3. 020 _ _ _ _

4. 300 _ _ _ _

5. 004 _ _ _ _

6. 050 _ _ _ _

7. 600 _ _ _ _

8. 007 _ _ _ _

9. 715 _ _ _ _

Did you read all the words before completing the above exercise? Symbolic or numeric? Read all the words.

3 Exercise: Testing permissions
1. While logged in as a regular user, execute the following three commands to create a testing directory:

[user@host]$ cd ; mkdir -p lab06/top ; cd lab06

For each row of the table below, repeat these next two steps (Read All The Words):

2. Go to the lab06 directory and change the permission of the top directory using the chmod command
given in the second column of the table. Execute this chmod command in the lab06 directory.

3. Next, for the row you are working on, execute the commands listed across the top of the table for that
permission level. For each command enter in the table whether the command line executes successfully
or not. Enter PD for Permission Denied; OK for success. The commands to try are:

a) cd top followed immediately by "cd .." if it worked (gave no error messages)
b) touch top/file followed immediately by "rm top/file" if it worked
c) mkdir top/dir followed immediately by "rmdir top/dir" if it worked
d) ls -l top

• You will carry out Steps 2 and 3 for each of the rows of the table below.
• Before you run each chmod command in the table below, ensure your current directory is lab06.
• If the cd into top works (no error), follow it immediately with "cd .." to return up to the lab06

directory again, otherwise you will be in the wrong directory for the next command in the table.
• If the touch works (no error), immediately remove the file you just created.
• If the mkdir works (no error), immediately remove the directory you just created.

Row Command line cd top touch top/file mkdir top/dir ls -l top
1. chmod 000 top _ _ _ _
2. chmod 100 top _ _ _ _
3. chmod 200 top _ _ _ _
4. chmod 300 top _ _ _ _
5. chmod 400 top _ _ _ _
6. chmod 500 top _ _ _ _
7. chmod 600 top _ _ _ _
8. chmod 700 top _ _ _ _

Did you read all the words before completing the above exercise? Your table must contain only OK or PD.

Page 4 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

4 Exercise: Minimum Permissions
In the table below, give in symbolic rwx form the minimum permissions a non-root user requires to
successfully complete the actions listed in the left column below. "Minimum" means the least amount of rwx
permissions needed. How many of rwx can you take away and still perform the given action successfully? Test
your guess to make sure you are correct. Recall that directories store only names and inode numbers, not data.

1. [user@host]$ cp srcdir/srcfile targetdir/
2. [user@host]$ mv srcdir/srcfile targetdir/
3. [user@host]$ ln srcdir/srcfile targetdir/
4. [user@host]$ rm srcdir/srcfile
5. [user@host]$ cat srcdir/srcfile
6. [user@host]$ date >> srcdir/srcfile

Action on the source directory on the source file on the target directory

1. copy a file _ _ _

2. move a file _ _ _

3. link to a file _ _ _

4. delete a file _ _ N/A

5. read a file _ _ N/A

6. modify an existing file _ _ N/A

Now go back and read all the words of this question, including the word "symbolic" in the first line.

5 Exercise: setting permissions using chmod
Create the following structure containing files and directories with the following permissions. All files and
directories should be owned by you, not by the root user. Numeric permissions required below will be three-
digit octal numbers. When you are applying permissions to directories as a non-root user, be careful not to lock
yourself out of directories by using chmod on them too soon - first create all the file and directory structure
from the top down and then apply restrictive permissions afterward from the bottom up.

1. Create directory lab06/top06 under your home directory.
a) Directory top06 has no permissions for others.
b) The group can use ls to see the content, but cannot create files or cd into the directory.
c) The user has full permissions.
Give the numeric permission (see above) for directory top06: _______________________

2. Underneath directory top06 create three single-letter directories named: u g o
a) Directory u has no permissions for group or other. The user can cd into it, but cannot create any

new content nor use ls to see any files in it.
Give the numeric permission for directory u: _______________________

b) Directory g has no permissions for user or other. The group can cd into it and use ls in it, but
cannot create any new content.
Give the numeric permission for directory g: _______________________

c) Directory o has no permissions for user or group. Others have full permissions.
Give the numeric permission for directory o: _______________________

3. Underneath directory u create three single-letter files named: r w x
a) None of the files have any permissions for group or other.
b) File r has read permission (only) for the user.

Give the numeric permission for file r: _______________________

Page 5 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

c) File w has write permission (only) for the user.
Give the numeric permission for file w: _______________________

d) File x has execute permission (only) for the user.
Give the numeric permission for file x: _______________________

4. Underneath directory g create three two-letter files named: rw wx rx
a) None of the files have any permissions for user or other.
b) File rw has read and write permission (only) for the group.

Give the numeric permission for file rw: _______________________
c) File wx has write and execute permission (only) for the group.

Give the numeric permission for file wx: _______________________
d) File rx has read and execute permission (only) for the group.

Give the numeric permission for file rx: _______________________
5. Underneath directory o create three three-character files named: rwx ??? ***

 (Some characters are meta-characters that are special to the shell unless you quote them!)
a) None of the files have any permissions for user or group.
b) File rwx has full permissions for other.

Give the numeric permission for file rwx: _______________________
c) File ??? has no permissions for other.

Give the numeric permission for file ???: _______________________
d) File *** has only read permission for other.

Give the numeric permission for file ***: _______________________

6 Upload: Check your work and submit the lab06marks.txt file
Into the lab06 directory, download the lab06check program (from the Class Notes), make it executable,
and run it as the root user with the HOME variable set to the absolute path of your own HOME directory:

[user@host lab06]$ su root
[root@host lab06]# chmod +x lab06check
[root@host lab06]# HOME=/home/user (use your own HOME directory here)
[root@host lab06]# ./lab06check

This program will check your work, assign you a mark, and put the mark into file lab06marks.txt so that
you can upload it to Blackboard as part of this assignment. You may run the lab06check program as many
times as you wish, to correct mistakes and get the best mark, before you upload the final marks file.

Linux File System Permissions - Part 2Linux File System Permissions - Part 2

1 Create two new non-root user accounts
For this section you will require two more ordinary user (non-root) accounts. To create the two accounts follow
these steps below (you need root privileges to create accounts - become the root user first):

1. [root@host]# useradd homer
The above creates a new "homer" login account and home directory. The account has no password yet.

2. [root@host]# passwd homer
The above sets homer's password. If you do not type the username after the passwd command, you are
changing the root password. Do not change your root password! Change homer's password.

3. Repeat the above steps to create another account named flanders and give it the same password.
4. Record the account information for the two new accounts by typing: id homer ; id flanders

5. Give the absolute pathname of the flanders account home directory: ______________________
6. Give the numeric permissions of the above home directory: ___________________________

Page 6 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

2 Creating a Public Directory in the system ROOT
We will create a public directory in which any user can create files. The directory will allow any user to create
names in it (or remove names). Recall that the permissions on a directory are not the same as the permissions on
the inodes named in the directory. Permission to change names does not grant permission to change content.

1. With root privileges create a directory called public under the ROOT directory: /public (NOT
/root/public) and record the command line: ___

2. Give a command line that will show the permissions of only the new /public directory:

3. What are the current numeric permissions for the /public directory: _______________________
4. Record the owner and group of the /public directory: ________________________________
5. Give /public full access permissions for everybody and record the exact command line you used:

6. What are the resulting changed numeric permissions for /public: ________________________

3 Using the Public Directory
In the next steps, where command lines are required, do each command and record the command line used:

1. What command line lets you become the flanders user: ______________________________
2. What command verifies that you are currently the flanders user: ________________________
3. What command line creates a new file /public/flanfile: ___________________________
4. Record the owner and group of the new flanfile file: _______________________________
5. What are the current numeric permissions for flanfile: _____________________________
6. What command line removes (only) all other permissions from /public/flanfile and does not

change any existing user or group permissions: ______________________________________
7. What are the resulting numeric permissions for flanfile: _____________________________
8. As user flanders, append the date to the new flanfile file. Record the full command line here:
__
9. What command line shows that the size of flanfile is 29 bytes: _________________________
10. As the homer user, try to display the contents of the flanfile file and record the error message:

11. As the homer user, rename the flanfile file owned by flanders to have the new name foo, and give

the output of ls -il /public/foo showing that the renamed foo file is still owned by flanders :

12. As the homer user, remove the name foo for the file owned by flanders. Why can you both rename

and then delete this file that you don't own and can't read? (Hint: Names store separately from content.)
__
__

4 Changing ownership
With root privileges, create an empty file and then change the owner and group to homer and homer:

[root@host]# touch /public/foo ; chown homer:homer /public/foo

a) Give the output of ls -il /public/foo showing the homer homer owner and group:
__

b) Become the flanders user and try to append the date to /public/foo. Can you do it? ______
c) Become the homer user and try to append the date to /public/foo. Can you do it? ________
d) As root, set (only) the group and group permissions so that both homer and flanders can read and

write foo but others cannot. Test it as both users. Give the output of ls -il /public/foo:
__

Page 7 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

CST8207: GNU/Linux Operating Systems I Lab Six Linux File System Permissions

Linux File System Permissions - Part 3Linux File System Permissions - Part 3

Shell umask and permissions for new files and directories
The shell umask value restricts the permissions given to new files and directories when they are first created.
Without the umask value, or with a zero value, a new file would be created with full permissions 666 and a new
directory with full permissions 777. The umask masks out permissions - each bit of the umask turns off the
corresponding permission in the newly created file or directory. A umask value of of 777 turns off all
permissions on new files and directories; a umask of 000 doesn't turn off any permissions (not recommended!).

Note that masking is not the same as subtracting, e.g. 666 masked with 001 is still 666 and 666 masked
with 003 is 664. The mask turns off permission bits. If they are already off, the umask makes no change:

• rw- (6) masked with --x (1) is rw- (6) because the x bit in the mask does not change any permissions
• rw- (6) masked with -wx (3) is r-- (4) because only the w bit is changed (turned off) by the mask

Each process, and thus each shell, has its own umask value. Different Linux distributions set different default
(at login) umask values. The values in your particular distribution of Linux may not be the same as other
distributions. The values set by the system administrator may differ from the distribution defaults. Do not rely
on the umask having any standard value.

a) What built-in shell command displays or sets the umask value: ______________
b) What option to the su command does a full "login shell" login: ______________
c) Give the default (at full login) umask for an ordinary user account in Fedora 12: ____________
d) Give the default (at full login) umask for the root account in Fedora 12: __________________

 For each row of the following table set the given umask and then fill in the four new permission columns:

e) Set and use the given umask in column two before filling in the permissions in the rest of the row.
f) Based on the umask in column two, write down the permissions that would be given to a new file and

a new directory. Give both the symbolic and numeric forms. You can create a new file and a new
directory to verify your answer, but you should calculate and know the answer without needing to create
anything. Using the given umask, what would be the permissions set on a new file and a new directory?

Row

Set your umask to this
value and then fill in

the fields on the right:

create new file permissions create new directory permissions

symbolic numeric symbolic numeric

1. umask 0001 _ _ _ _

2. umask 0002 _ _ _ _

3. umask 0003 _ _ _ _

4. umask 0022 _ _ _ _

5. umask 0077 _ _ _ _

6. umask 0777 _ _ _ _

After you are finished the above exercise, exit your shell or reset your umask back to the normal umask. Do
not continue to use a shell that has a umask of 0777.

7. True or False - the umask can change the permissions of existing files and directories? __________
8. What command name changes the permissions of existing files and directories: __________
9. What value umask gives the owner and group full permissions on new files and directories: _____
10. What value umask gives only the owner full permissions on new files and directories: _______

Page 8 of 8
©2012 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
cst8207_12w_lab06.odt

Version 8.1 03/12/2012, 03:42:52

