
CST8207: Linux Operating Systems I Lab Worksheet Six The vi/vim text editor

This is Lab Worksheet 6 – part of a BONUS Assignment

This worksheet is part of an optional BONUS assignment. You must successfully complete and hand in
this finished worksheet if you do the optional BONUS assignment. See the assignment for details.

1 Before you get started - REMEMBER TO READ ALL THE WORDS
You must have an account on the Course Linux Server to do this lab. Log in to the server and use the shell.
Review the Class Notes related to this worksheet as you work through it. Leave your work on the Linux server.
Do not delete any work from the Linux server until the term is over and your marks are complete!

vi/vim : Hard to Learn - Easy to Use
➢ vi – console terminal-based (non-GUI) text editor, standard version (vi may have limited features)
➢ vim – vi text editor (as above) but an improved version (vim has full features that vi may not)
➢ gvim – vim text editor - graphical version for X11 GUI (full features) - may not be installed
➢ vimtutor – vim text editor interactive tutorial - type this command at any shell prompt

• The Linux command vi is usually a link to the newer vim text editor. Some versions of Linux install a
smaller, limited version of vi as the default editor and you have to explicitly ask for an upgrade to get the
full vim version with all the great features. gvim (if available) starts an X11 GUI-based version of vim.

• Some distributions (e.g. Fedora 12) install a smaller, less feature-filled version of vim as vi (e.g.
/bin/vi), but then use system aliases to alias vi to a larger version of vim (e.g. /usr/bin/vim), so
that you never really know which version you're getting. You can define your own alias to be sure.

• You can find out which version of vim you're running using the vim :version and :help commands.
(Under Fedora, the smaller vi version has the wrong help files installed. Use vim not vi on Fedora 12.)

• The vi text editor is the standard editor available on most every Unix-derived system, including Linux,
MacOSX, and BSD. It can be used on most any terminal, over the slowest of dial-up links. It is a pure
console terminal-based program that needs no mouse or graphical display screen. No mouse!

• Similar to learning to touch-type on a keyboard, the vim editor is difficult to learn but easy to use once you
have some mastery of it. Until you master it, you will find using vi awkward. Once you master it, you will
easily outperform anyone using a mouse-based editor such as Notepad. Learn the tool!

• The single-character command keys used in vi have found their way into other programs. The bash shell
supports a vi mode for editing command lines, and the less and more pager programs (used by the man
command) use vi commands to move around the screen and search for text.

• vi is incredibly powerful. Most students refuse to learn it well enough to get out of the awkward stage.
They never master many vi commands. They go into vi insert mode and perform all text editing using the
arrow and backspace keys, turning vi into a slower, mouseless version of Notepad. If you want a
Unix/Linux job, learn the editor tool! If you want to use arrow keys, us the Pico or Nano editors instead.

• vi Recommended Reference card – use the front only (Donald Binder):
• Front: http://teaching.idallen.com/cst8207/1 9w /notes/vi_refcard_front.pdf
• Back (optional): http://teaching.idallen.com/cst8207/1 9w /notes/vi_refcard_back.pdf

• vi / vim Cheat Sheets: http://cheat-sheets.org/#Vim
• Online interactive web tutorial (untested): http://lifehacker.com/5844890/the-

interactive-vim-tutorial-teaches-you-how-to-use-the-super+efficient-vim-
text-editor

• Home page: http://www.vim.org/
• Vi Lovers Home Page is http://thomer.com/vi/vi.html

Page 1 of 7
©2013 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet06.odt

Version 16 01/05/2019, 20:55

http://teaching.idallen.com/cst8207/19w/notes/vi_refcard_front.pdf
http://thomer.com/vi/vi.html
http://www.vim.org/
http://lifehacker.com/5844890/the-interactive-vim-tutorial-teaches-you-how-to-use-the-super+efficient-vim-text-editor
http://lifehacker.com/5844890/the-interactive-vim-tutorial-teaches-you-how-to-use-the-super+efficient-vim-text-editor
http://lifehacker.com/5844890/the-interactive-vim-tutorial-teaches-you-how-to-use-the-super+efficient-vim-text-editor
http://cheat-sheets.org/#Vim
http://teaching.idallen.com/cst8207/19w/notes/vi_refcard_back.pdf
http://teaching.idallen.com/cst8207/19w/notes/vi_refcard_back.pdf
http://teaching.idallen.com/cst8207/19w/notes/vi_refcard_back.pdf
http://teaching.idallen.com/cst8207/19w/notes/vi_refcard_front.pdf
http://teaching.idallen.com/cst8207/19w/notes/vi_refcard_front.pdf

CST8207: Linux Operating Systems I Lab Worksheet Six The vi/vim text editor

1 Exercise and practice in text editing - Read All The Words
• Work in your own HOME directory. You will be creating files in your own HOME directory.
• Open the recommended vi reference card before you begin. All the commands needed for this lab are

there, including "redo last change" which is control-R in vim (not available in old versions of vi).
• Before you begin, complete the vimtutor tutorial program that teaches you vim basics.
• The following text editing exercise requires absolute precision. You are system technicians; small

errors in configuration files can disable systems. Accuracy is important. You can work on each
section of this exercise repeatedly until you get it letter-perfect, then move on to the next section.

• In the underlined spaces below, enter what you typed into vi/vim to make the given edit using the
given number of vi/vim command characters (or fewer, if you can). Do not use any arrow keys.

• If you make a mistake, simply type the vim undo command character repeatedly to undo your
mistake(s). You can undo (and redo) multiple times to get the file back to a state you recognize.

• You don't have to save and exit the editor to check your work, below. Use a second terminal so that
you don't have to leave and re-enter vim every time. Save your work, then use the other terminal to run
the file, wc, and sum commands shown below.

• Do not use insert mode and the arrow keys to move around the text file. Use command mode and the
motion commands - they are much faster once you learn them. Do not use the arrow keys!

• When below it says "insert a word", it means the word and the space(s) around the word, not just the
letters of the word. Make sure each word is separated from adjacent words with one space.

• Inserting text always means "insert the text then return to command mode". Do not remain in insert
mode. Always return to command mode after an edit, so you are ready for the next command.

• Do not enter multiple spaces between words. Do not enter spaces at the start or end of lines.
◦ If you want to see the extra spaces at the end of lines, enter: :set list
◦ Turn off list view using: :set nolist

• Do not enter extra blank lines, especially blank lines at the bottom of the file. No extra blank lines!
• Save your work after each successful section, so that you can return to this point if you don't get the

next section correct. Think of these save files as little snapshots of your editor session.

1.1 Section save1.txt
1. Create a bash terminal window that is at least 80 columns wide by 24 lines long. Larger is good.
2. Start the vim editor with this (new) file name as an argument: lab06.txt
3. Turn on the vim showmode option so you know what mode you are in :set showmode

(This is often enabled by default.) Also useful inside vim is: :set ruler
4. Go into insert mode, enter this single line of text (mouse copy and paste) and save your work:

Royal Rhonda's repulsive, roaring rabbits ruined Randy's rutabagas
• You must only mouse-paste text into vim when in insert mode. Pasting into command mode

will run your mouse-pasted text as vim commands! Always mouse-paste into insert mode!
• Case matters in everything in this exercise. Use one space only between each word.
• There is no final punctuation yet. Those are ASCII apostrophes, not UTF-8 smart quotes.
• There are no leading or trailing spaces on the one line.
• There are no leading or trailing blank lines. The file should be exactly one line long.

5. Check your work with file, wc, and sum. You should see these results for your one-line text file:
[user@host ~]$ file lab06.txt ; wc lab06.txt ; sum lab06.txt
lab06.txt: ASCII text
 1 8 67 lab06.txt
28356 1

6. When you are successful, make a backup copy of your new one-line text file in save1.txt and
optionally make the save file read-only so that you don’t change it by mistake.

Page 2 of 7
©2013 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet06.odt

Version 16 01/05/2019, 20:55

CST8207: Linux Operating Systems I Lab Worksheet Six The vi/vim text editor

1.2 Section save2.txt
1. Continue editing the lab06.txt file. Let's review some basic commands (see your reference card):
2. With one command keystroke, go to the beginning (first character) of the line. That key is: ___
3. Move across the line by next words, from left to right. That key is: ___
4. Move back across the line by beginnings of words, from right to left. That key is: ___
5. Move across the line by blank-delimited words left to right. That key is: ___
6. Move back across the line by blank-delimited words right to left. Key used: ___
7. Type one single character to go to the end of the line and simultaneously enter insert mode (one

character: ___). Type a space and the word today after rutabagas. Do not add any punctuation
yet. Remember to leave insert mode. Never stay in insert mode.

8. Type one single character to go to the beginning of the line and simultaneously enter insert mode (one
character: ___) Type the word Oh! at the beginning of the line (followed by a space) before Royal.
Remember to leave insert mode. Never stay in insert mode.

9. Save and check your work (two more words!) with wc and sum: 1 10 77 and 58465
10. When you are successful, make a backup copy of your edited one-line text file in save2.txt and

optionally make the save file read-only so that you don’t change it by mistake.

1.3 Section save3.txt
1. Continue editing the lab06.txt file.
2. Move to the start of the line (one character: ___). Move forward to the first upper-case R (two

characters: ___). Efficiently delete the word Royal (two characters: ___).
3. Undo the previous deletion using one character: ___
4. Redo the previous deletion using one (control) character: ___
5. Add an exclamation point to the end of the line using only three characters. including the character used

to get out of insert mode: ___ Remember to leave insert mode. Never stay in insert mode.
6. Using only four characters, duplicate the first word in the line. Hint: Move to the beginning of the line

(one character: ___). Yank the blank-delimited word into the cut buffer (two characters ___) and
put the word before the cursor position (one character: ___). Make sure you put before not after.

7. Save and check your work (ten words) with wc and sum: 1 10 76 and 35211
8. When you are successful, make a copy of your edited one-line text file in save3.txt and make the

save file read-only so that you don’t change it by mistake.

1.4 Section save4.txt
1. Continue editing the lab06.txt file.
2. Turn on line numbers using: :set number

The line numbers appear inside vi/vim only; they will not be saved to the edited file.
3. Using only three or four characters, duplicate the one line in the file 9 times; you should end up with 10

identical lines in the file. Hint: use one or two characters to yank the current line into the cut buffer:
___ then use a repeat count to put the buffer after the current line 9 times (one digit [the repeat count]
and one letter: ___). Make sure you have 10 identical lines. Save the 10 identical lines and check your
work with wc and sum: 10 100 760 and 52495

4. When you are successful, make a backup copy of your edited 10-line text file in save4.txt and
optionally make the save file read-only so that you don’t change it by mistake.

5. Continue editing the lab06.txt file. Using only six characters, yank all 10 lines in the file (the
whole file) then put it back 9 times, giving 100 lines total. Hint: two characters to go to the beginning
(first line) of the file: ___ two characters to yank from here to end-of-file into the cut buffer ___ one
digit and one character to put the cut buffer 9 times before the top line: ___ You can type control-G to
show the current file and number of lines, to confirm that the file is 100 lines. Make sure you put before
the current line when you put.

Page 3 of 7
©2013 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet06.odt

Version 16 01/05/2019, 20:55

CST8207: Linux Operating Systems I Lab Worksheet Six The vi/vim text editor

6. Using three characters (two digits and a letter), go to line 70: ___
7. Using one character, move to the top line on your screen (the top line on your screen is not the same as

the beginning of the file): ___
8. Type multiple k to move straight up, and watch the screen scroll down one line at a time.
9. Using one character, move to the middle line on your screen: ___
10. Using one character, move to the bottom line on your screen (the bottom line of your screen is not the

same as the last line of the file): ___
11. Type multiple j to move straight down, and watch the screen scroll up one line at a time.
12. Use one character to move to the bottom line of the file (move to end-of-file): ___
13. Type three characters plus [Enter] to search forward for the two-letter pattern: ru ___
14. Type one character to repeat the search forward (in the same direction) for the next match: ___
15. Move to find match number 50 in the file using two digits (repeat count) and one character: ___
16. Type one character to repeat the search backward (reverse direction) for the previous match: ___
17. Undo the most recent text change(s) using the undo character: ___ . Your file should be back to 10

lines again. (Use control-G to check!) Make sure the file has ten identical lines before continuing.
18. Optionally, turn off line numbering if you don't like it (some people do): :set nonumber

1.5 Section save5.txt
1. Continue editing the 10-line lab06.txt file that contains 10 identical lines. (Same as save4.txt)
2. Go to line 8 (use one digit and one letter: ___). Move forward to the first lower-case r (two

characters: ___)
3. Now use six characters to change the word repulsive to ill Hint: use two command characters to

change a word and enter insert mode, type three letters "ill", type one mode-change character: ___ .
Remember to leave insert mode. Never stay in insert mode.

4. Move forward to the next lower-case r on this line (two characters [a repeat move is just one
character if you know how!]: ___) and type one single character to repeat the last text-changing
command (one character: ___). Repeating the change will also change the word roaring to ill on
this line (line 8). You can save a lot of typing using the repeat command.

5. Using only eight command characters, go to line 6 and replace the same two words with ill. Hint: go
to line 6 takes two characters: ___ move forward to r takes two characters (only one if you know
how): ___ repeat the last text change takes one character: ___ move forward takes two characters
(only one if you know how): ___ repeat the last text change takes one character: ___

6. Undo the last change so that roaring re-appears in line 6 (one character undo: ___).
7. Redo the last change so that ill re-appears in line 6 (one control-character redo: ___).
8. Undo the last change so that roaring re-appears again in line 6 (one character undo: ___).
9. Use nine characters to go line 4 and change everything from the start of the line forward to the first

comma (inclusive) to the word How. Hint: go to line 4 takes two characters ___ change text forward to
comma takes three characters (a change command followed by a forward motion to a comma - it goes
into insert mode) ___ typing How takes three characters and exit insert mode takes one character.

10. Save and check your work with wc and sum: 10 97 720 and 05436
11. When you are successful, make a backup copy of your edited 10-line text file in save5.txt and

optionally make the save file read-only so that you don’t change it by mistake.

1.6 Section save6.txt
1. Continue editing the lab06.txt file.
2. Using five characters (or less), toggle upper/lower case on every character on line two. Hint: go to line

two takes two characters: ___ toggling 99 characters (more than the length of line two) takes two digits
and one character: ___ Most of the line will now be upper-case letters. (There is also a three-character
way to make this same change that works for any line length. One of the reference sheets has it.)

Page 4 of 7
©2013 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet06.odt

Version 16 01/05/2019, 20:55

CST8207: Linux Operating Systems I Lab Worksheet Six The vi/vim text editor

3. Use four characters to delete the first four blank-separated words on this line (line two). Hint: one
character takes you to the beginning of the line ___ deleting four blank-separated words takes one digit
and two characters: ___)

4. Use four characters to replace the only lower-case letter in this line (line two) with upper-case C so
that it says CANDY'S Hint: use two characters to move forward to the r: ___ use two characters to
replace the single r with C: ___ Make sure all six words on this line (line two) are now upper-case.

5. Save and check your work with wc and sum: 10 93 692 and 64996
6. When you are successful, make a backup copy of your edited 10-line text file in save6.txt and

optionally make the save file read-only so that you don’t change it by mistake.

1.7 Section save7.txt
1. Continue editing the lab06.txt file.
2. Use four characters to go to the last line of the file (move to end of file) and delete everything from the

comma to the end of the line. Hint: one character to move to end-of-file ___ two characters to move
forward to the character comma ___ one character to delete from the cursor to end-of-line ___

3. Use three characters to make the same change to the line above (to line 9). Hint: one character to go
straight up one line ___ one character to move right one character (onto the comma) ___ one
character to repeat the last text change (that deletes to end-of-line) ___

4. Use four characters to make the same change to line 7. Hint: two characters to go straight up two lines
___ one character to move right one character (onto the comma) ___ one character to repeat the last
text change (that deletes to end-of-line) ___

5. Use the same four characters to make the same change to line 5.
6. Use two or three characters to undo the last three text changes, restoring the deleted text at the end of

lines 5, 7, and 9: ___ (You can repeat the undo command three times, or use a digit 3 followed by the
undo command letter to repeat undo three times.) The text remains missing from line 10 only.

7. Save and check your work with wc and sum: 10 87 643 and 48878
8. When you are successful, make a backup copy of your edited 10-line text file in save7.txt and

optionally make the save file read-only so that you don’t change it by mistake.

1.8 Section save8.txt
1. Continue editing the lab06.txt file.
2. Use five characters to go to line three and delete the first 69 characters, leaving only the word today!

Hint: two characters go to line three ___ then use two digits (the repeat count) and one character to
delete 69 characters moving to the right ___

3. You are currently on line three. Insert the word Not (and a space) at the start of line three, in front of
today! Remember to leave insert mode. Never stay in insert mode.

4. Use three characters to exchange lines three and four. Hint: two characters delete the current line three
(into the cut buffer; line four moves up and becomes the new current line three) ___ one character puts
the cut buffer after the current line ___ Line four, containing the contents of the put cut buffer,
becomes the current line: Not today!

5. Starting where you are on line four, use two characters to join line four onto the end of line three. Hint:
use one character to move straight up to line three and one character to join the two lines: ___

6. Move line one down to be line three, so that all the lines starting with Oh! are together. Hint: move to
line one; delete line one into the cut buffer; move down one line (to line two) and put the cut buffer
after the current line. Line one is now line three. All lines starting with Oh! are together.

7. Move to the start of line three, the first line starting with Oh!
8. Use two characters to delete the first word (including the punctuation) on this line (line three): ___
9. Use three characters to move to the next line (line four) and delete the first two words. Hint: one

character moves straight down to the same place on the line below ___ and you can repeat the last text

Page 5 of 7
©2013 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet06.odt

Version 16 01/05/2019, 20:55

CST8207: Linux Operating Systems I Lab Worksheet Six The vi/vim text editor

change (delete a word) twice using a digit followed by one character to repeat the last text-changing
command ___

10. Use just two characters to delete the first two words on the next line (line five) ___ . Hint: one
character moves straight down to the same place on the line below and one character repeats the last
text change, which was to delete two words.

11. Use just three characters to skip a line and delete the first two words on the next line (line seven). Hint:
two characters move straight down two lines ___ one character repeats the last change (which was to
delete two words) ___ You can save a lot of typing using the repeat last change command.

12. Save and check your work with wc and sum: 9 72 551 and 54341
13. When you are successful, make a backup copy of your edited 9-line text file in save8.txt and

optionally make the save file read-only so that you don’t change it by mistake.

1.9 Verification Section
You have created one lab06.txt file and eight save[1-8].txt files in your HOME directory.

The lab06.txt and save8.txt files should be identical. (Use the wc and sum commands to make sure.)

Execute the following shell command lines to save your work in a new lab06 directory. You will create the
directory, move all the files into the directory, make all the files read-only (mode 400), then create a hidden
verification file with the output of two commands appended to it.

Make sure you get the typing exactly correct in these next five lines. (Use copy-and-paste to be sure!)

cd ; mkdir -p lab06
mv lab06.txt save?.txt lab06/
chmod 400 lab06/*
ls -dils lab06/* >lab06/.verify.txt
sum lab06/* >>lab06/.verify.txt

Note the use of >> append redirection on the sum command line. Note the use of a hidden file name for
both the output redirection lines. This hidden name will not be matched by the shell GLOB patterns. Changing
permissions with chmod will be covered fully toward the middle of the semester.

Check to ensure that you have 9+9=18 lines of output in the .verify.txt file. (Recall the command that
counts lines inside a file. Use it to count the lines in your .verify.txt file. There should be 18 lines.)

Follow the directions in the optional BONUS assignment to submit your work.

You must also submit this completed worksheet as part of the optional BONUS
assignment. See the BONUS assignment for the details. Please read all the words.

The next page contains some optional advanced editing features.

These features are not part of the BONUS assignment.

Page 6 of 7
©2013 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet06.odt

Version 16 01/05/2019, 20:55

CST8207: Linux Operating Systems I Lab Worksheet Six The vi/vim text editor

2 Advanced Editing Section (optional)
• This section shows off two of the more advanced and cool vi/vim editor features.
• This section is optional. I hope it interests you in learning more about vi/vim
• Return to your own HOME directory. Copy the save8.txt file from the previous section to the new

file adv10.txt under HOME. The file should have a wc of 9 72 551 Do not edit the wrong file.

2.1 Send any number of lines to an external command
You can send any number of lines from your editor buffer into the standard input of any command. The
command may process those lines and the output of the command will replace the lines in the editor buffer.

1. In your HOME directory, edit the adv10.txt file (a copy of save8.txt) that contains nine lines.
2. Go to the first line of the file and type this four-character command followed by [Enter]: !Gwc 

• this sends all lines from the cursor to end-of-file into wc and replaces them with the output of wc
• you should see the expected 9 72 551 output from wc

3. Undo the last change. (The output from wc disappears and the nine original lines return.)
4. Go to the first line of the file and type this five-character command followed by [Enter]: !Gsum 

• sends all lines from the cursor to end-of-file into sum and replaces them with the output of sum
• you should see the expected 54341 output from sum

5. Undo the last change. (The output from sum disappears and the nine original lines return.)
6. Go to the last line of the file (line nine) and open for input a new blank line (line ten).
7. On the new blank line type this text: ls -li adv10.txt /etc/passwd
8. Send the current line into bash by typing this seven-character command: !!bash 

• when you push [Enter] this sends just the current line (line ten) into the bash shell program
• bash executes the commands it is reading on standard input and the output goes into the editor
• you should see the multi-line output of the ls command replacing line ten

9. Go to line one and execute the seven-character command: !Gsort  What happens?
10. Go to line five and execute: !!date  What happens? Try other commands!
11. Quit the editor without saving anything.

2.2 Record any sequence of edit commands in a macro
You can record any complex sequence of editor commands into a single-letter macro that you can re-execute.

1. In your HOME directory, edit the adv10.txt file (a copy of save8.txt) that contains nine lines.
2. Go to the beginning of the first line of the file.
3. Record a macro named q by typing qq that will turn on the recording flag in the bottom line status

bar. You are now recording all the commands you are using into buffer q. Do these commands:
• Move forward in this line to the fourth space: 4f (there is a space after the f command)
• Append three asterisks and a space after the cursor (and always exit insert mode): a*** ESC
• Close the editing macro by typing a single q that turns off the recording flag. Macro q is ready.

4. The first line now has three asterisks in it: ... CANDY'S *** RUTABAGAS ...
5. Move to the beginning of any other line in the document and re-execute this macro by typing: @q

Note how the macro executes the same editor commands and makes the same change to this line.
6. Move to the second space in any line in the document and re-execute the macro: @q

Note how the macro makes the same change to the sixth space, because it moves forward four spaces.
7. Go to the last line of the file (line nine) and open a new blank line (line ten).
8. On this blank line dump the macro contents by typing: "qp (that is one double quote to start)
9. Change the three asterisks to Fancy Macro and re-save the macro: "qyy (one double quote)
10. Go to any line and try the new macro. You can dump and modify any macro after you have recorded it.

Page 7 of 7
©2013 Algonquin College

Shawn Unger, Todd Kelley, Ian Allen
worksheet06.odt

Version 16 01/05/2019, 20:55

	This is Lab Worksheet 6 – part of a BONUS Assignment
	1 Before you get started - REMEMBER TO READ ALL THE WORDS

	vi/vim : Hard to Learn - Easy to Use
	1 Exercise and practice in text editing - Read All The Words
	1.1 Section save1.txt
	1.2 Section save2.txt
	1.3 Section save3.txt
	1.4 Section save4.txt
	1.5 Section save5.txt
	1.6 Section save6.txt
	1.7 Section save7.txt
	1.8 Section save8.txt
	1.9 Verification Section

	2 Advanced Editing Section (optional)
	2.1 Send any number of lines to an external command
	2.2 Record any sequence of edit commands in a macro

