ALGONQUIN	
COLLEGE	Lab Section:

Objectives: To practice binary/octal/hexadecimal conversions and two's complement mathematics.

References: ECOA2e Section 2.3, 2.4

Name:

Show all your work clearly, either on the back of this page or on attached separate sheets.

- 1. Write down all the negative powers of two from zero ("1") to -4 ("0.0625").
- 2. Convert 0.34375₁₀ to 0.0101₂ binary, stopping at four fractional bits (ECOA2e Example 2.7 p.45).
- 3. Convert 6235₈ octal to C9D₁₆ hexadecimal (ECOA2e Example 2.9 p.46).
- 4. What are the largest and smallest integers an 8-bit word can hold using a sign-magnitude representation? (p.47)
- 5. What are the largest and smallest integers an 8-bit word can hold using a one's complement representation?
- 6. What are the largest and smallest integers an 8-bit word can hold using a two's complement representation?
- 7. What are the largest and smallest integers a 16-bit word can hold using a two's complement representation?
- 8. Convert 23₁₀ to 8-bit 00010111₂ binary one's complement (ECOA2e Example 2.16 p.53).
- 9. Write 23₁₀ in octal and hexadecimal.
- 10. Convert -9₁₀ to 8-bit 11110110₂ binary one's complement (ECOA2e Example 2.16 p.53).
- 11. Write 11110110₂ in octal and hexadecimal.
- 12. Convert -23₁₀ to 8-bit 11101000₂ binary one's complement.
- 13. How do you know that a two's-complement addition has overflowed?
- 14. Convert 23₁₀ to 8-bit 00010111₂ binary two's complement (ECOA2e Example 2.19 p.54).
- 15. Write 00010111₂ in octal and hexadecimal.
- 16. Convert -9₁₀ to 8-bit 11110111₂ binary two's complement (ECOA2e Example 2.19 p.54).
- 17. Write 11110111₂ in octal and hexadecimal.
- 18. Convert -23₁₀ to 8-bit 11101001₂ binary two's complement (ECOA2e Example 2.19 p.54).
- 19. Write 11101001₂ as octal and hexadecimal.
- 20. Write 10010011₂ as octal and hexadecimal.
- 21. Convert 8-bit 10010011₂ binary unsigned to 147₁₀ decimal.
- 22. Convert 8-bit 10010011₂ binary sign-magnitude to -19₁₀ decimal (note the negative).
- 23. Convert 8-bit 10010011₂ binary one's complement to -108₁₀ decimal (note the negative).
- 24. Convert 8-bit 10010011₂ binary *two's complement* to -109₁₀ decimal (note the negative).
- 25. Copy the left column of ECOA2e Table 2.2 p.63 and perform the given two's complement additions. Without looking, fill in the remaining four columns based on the results. (Note: this table has one printing error in it.)
- 26. Convert 16-bit two's complement 1A8C₁₆ to 6,796₁₀ decimal.
- 27. Convert 16-bit two's complement 7FFF₁₆ to 32,767₁₀ decimal.
- 28. Convert 16-bit two's complement 8000₁₆ to decimal -32,768₁₀ (note the negative).
- 29. Convert 16-bit two's complement A123₁₆ to decimal -24,285₁₀ (note the negative).
- 30. Convert 16-bit two's complement FFFF₁₆ to decimal -1₁₀ (note the negative).
- 31. Circle the negative numbers (16-bit two's complement): 6FFF₁₆ 7FFF₁₆ 8000₁₆ 8001₁₆ 9FC5₁₆ A123₁₆ BFFF₁₆
- 32. Add 16-bit two's complement ABCD₁₆ to 7FFF₁₆ and give the Result, Carry, and Overflow. Is the result correct?
- 33. Add 16-bit two's complement 8A9C₁₆ to ABCD₁₆ and give the Result, Carry, and Overflow. Is the result correct?
- 34. Add 16-bit two's complement 9999₁₆ to 4321₁₆ and give the Result, Carry, and Overflow. Is the result correct?