�

� SET CourseNumber "CST8152" �CST8152�

� SET TestDate "July 7, 1997" �July 7, 1997�

� SET TestTitle "Midterm #2" �Midterm #2�

� SET StartTime 10:00 �10:00�

� SET EndTime 10:50 �10:50�

� SET Duration "50 Minutes" �50 Minutes�

� SET LectureSect "010" �010�

� SET CourseTitle "Compilers" �Compilers�

� SET Instructor "Ian D. Allen" �Ian D. Allen�

� SET TotalMarks 50 �50�

� SET PercentWeight 40 �40�

�

Algonquin College

� REF CourseNumber*MERGEFORMAT �CST8152� - � REF CourseTitle*MERGEFORMAT�Compilers�

� REF TestTitle* MERGEFORMAT �Midterm #2� - � REF TestDate * MERGEFORMAT �July 7, 1997�

�REF StartTime* MERGEFORMAT �10:00� - �REF EndTime * MERGEFORMAT �10:50� - � REF Duration* MERGEFORMAT �50 Minutes�

Lecture Section � REF LectureSect * MERGEFORMAT�010� - � REF Instructor*MERGEFORMAT�Ian D. Allen�

	Identification

	

Your name:�
�REF Instructor*MERGEFORMAT�Ian D. Allen��
Please Print Clearly�
 �
�
�
�
�
�
�
Your student ID:�
�FILENAME�save.doc��
Your Lab Sect:�
�REF LectureSect*MERGEFORMAT�010��
�
	Instructions

Read the whole test before you start. This test has � NUMPAGES * MERGEFORMAT �4� pages. �Find the easy questions. Do the things you know best first. You have � REF Duration*MERGEFORMAT�50 Minutes�.

Answer questions in the space provided, or on the back of the indicated page.�Hand in this test when you are finished.

No calculators or other aids are permitted. This test is closed book.

Raise your hand if you have questions. Do not leave your seat.

You may not be able to complete the entire test.�Remain calm. Answer as much as you can.

	Marking Scheme

This � REF TestTitle * MERGEFORMAT �Midterm #2� is marked out of � REF TotalMarks*MERGEFORMAT �50�. That works out to one mark per minute. Use the number of marks to get a rough idea of how many minutes you should spend on a question, e.g. 10 marks means no more than 10 minutes:

�
� TOC \o "3-3" \n �Q-1	5 marks

Q-2	8 marks

Q-3	10 marks

Q-4	16 marks

Q-5	3 marks

Q-6	2 marks

Q-7	6 marks

��

Marks for each question are listed beside each question.

Midterms and class quizzes count together for � REF PercentWeight * MERGEFORMAT �40�% of your final grade.

�

Q-1	5 marks

Write underneath the diagram the regular expression corresponding to the following DFA:

�

	_____________________________________ aa*b(a|cd(d|b)*a)

Q-2	8 marks

Show and explain why the following grammar is ambiguous using the given sentence as an example.�Sentence: a + b * c Grammar:

S (A | ID | B�A (S '+' S�B (S '*' S

Q-3	10 marks

Given the simplified Toy Grammar:

A (ID '=' E ';'

E (T (('+'|'-') T)*

T (F (('*'|'/') F)*

F (ID | '(' E ')'

Show the Parse Tree corresponding to the following input sentence (also reproduced at page bottom):

	A = b + (c - (d + e * f) / g) * h / i ;

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

A = b + (c - (d + e * f) / g) * h / i ;

Q-4	16 marks

Read this whole question carefully. On the back of the previous page, write a set of C language recursive descent parsing functions that recognize the fictitious grammar given below�:

<arraystmt> ('@' VAR '=' <unary> (',' <unary>)* ';'

<unary> (('-' <item>) | <item>

<item> ('(' <unary> ')' | CONST | VAR

No semantic actions are required; no Boolean nested error recovery is needed. The functions need only parse and recognize the input. A failure to parse the input must result in a call to error("…") that will cause the compiler to exit immediately with an appropriate error message. Give the appropriate error message as the string argument to each use of the error("…") function in your code. Keep it simple.

Assume the lexical scanner is named scanner(), the type of the current look-ahead token type is in a global variable named tt (token type), and that the error exit function is named error("…").

(Use these two functions in your parser; do not write them yourself.) Write only the functions that parse the above grammar. Invent reasonable names for the various terminal symbols in the grammar.

Q-5	3 marks

What are three goals of the error handler in a parser?

�
�
�
�
�
�
�
�
�

Q-6	2 marks

Briefly, what is the difference between error recovery and error repair in a parser?

Q-7	6 marks

Name and describe very briefly three typical methods of error recovery used in compilers.

�
�
�
�
�
�
�
�
�

DRAFT by � REF Instructor*MERGEFORMAT �Ian D. Allen�		� FILENAME �cst8152-97s-midterm-2.doc�

� DATE \@ "yy/MM/dd" �97/09/04� � TIME \@ "HH:mm" �15:28�		 Pages: � NUMPAGES �1�

� REF CourseNumber*MERGEFORMAT �CST8152� - � REF CourseTitle*MERGEFORMAT �Compilers� - Section � REF LectureSect *MERGEFORMAT�010� 	Page � PAGE �1� of � NUMPAGES �1�

� REF TestTitle*MERGEFORMAT �Midterm #2� - � REF TestDate*MERGEFORMAT �July 7, 1997�		� REF Instructor*MERGEFORMAT�Ian D. Allen� – Algonquin College

�PAGE \# "'Page: '#'�'" �asst(){

	if (tt != '@')

		error("missing @");

	scanner();

	if (tt != VAR)

		error("missing VAR");

	scanner();

	if (tt != '=')

		error("missing =");

	scanner();

	unary();

	while(tt == ','){

		scanner();

		unary();

	}

	if (tt != ';')

		error("missing ;");

	scanner();

}

unary(){

	if (tt == '-')

		scanner();

	thing();

}

item(){

	switch(tt){

	case VAR:

	case CONST:

		scanner();

		break;

	case '(':

		scanner();

		unary();

		if (tt != ')')

			error("missing)");

		scanner();

		break;

	default:

		error("expecting VAR CONST or (");

	}

}

