DRAFT by Ian D. Allen

cst8152-97s-midterm-2b.doc
98/03/22 08:37

 Pages: 1

CST8152
July 7, 1997
Midterm #2
10:00
10:50
50 Minutes
010

Compilers
Ian D. Allen
50
40

Algonquin College

CST8152 - Compilers
Midterm #2 - July 7, 1997
10:00 - 10:50 - 50 Minutes
Lecture Section 010 - Ian D. Allen
Identification

Your name:
Ian D. Allen
Please Print Clearly

Your student ID:
cst8152-97s-midterm-2.doc
Your Lab Sect:
010

Instructions

· Read the whole test before you start. This test has 4 pages.
Find the easy questions. Do the things you know best first. You have 50 Minutes.

· Answer questions in the space provided, or on the back of the indicated page.
Hand in this test when you are finished.

· No calculators or other aids are permitted. This test is closed book.

· Raise your hand if you have questions. Do not leave your seat.

· You may not be able to complete the entire test.
Remain calm. Answer as much as you can.

Marking Scheme

This Midterm #2 is marked out of 50. That works out to one mark per minute. Use the number of marks to get a rough idea of how many minutes you should spend on a question, e.g. 10 marks means no more than 10 minutes:

Q-1
5 marks

Q-2
8 marks

Q-3
10 marks

Q-4
16 marks

Q-5
3 marks

Q-6
2 marks

Q-7
6 marks

Marks for each question are listed beside each question.

Midterms and class quizzes count together for 40% of your final grade.

Q-1 5 marks

Write underneath the diagram the regular expression corresponding to the following DFA:

[image: image1.wmf]A

ID

=

b

ID

F

T

+

(

c

ID

F

T

-

(

d

ID

F

T

+

e

ID

F

*

f

ID

F

T

E

)

F

/

g

ID

F

T

E

)

F

*

h

ID

F

/

i

ID

F

T

E

;

A

_____________________________________ aa*b(a|cd(d|b)*a)
Q-2 8 marks

Show and explain why the following grammar is ambiguous using the given sentence as an example.
Sentence: a + b * c Grammar:

[image: image2.wmf]a

ID

S

+

b

ID

S

A

S

*

c

ID

S

B

S

[image: image3.wmf]a

ID

S

+

b

ID

S

*

c

ID

S

B

S

A

S

S (A | ID | B
A (S '+' S
B (S '*' S
Ambiguous: two leftmost derivations, or two different parse trees. Here are two parse trees:
Q-3 10 marks

Given the simplified Toy Grammar:

A (ID '=' E ';'
E (T (('+'|'-') T)*
T (F (('*'|'/') F)*
F (ID | '(' E ')'

Show the Parse Tree corresponding to the following input sentence (also reproduced at page bottom):

A = b + (c - (d + e * f) / g) * h / i ;

[image: image4.wmf]a

ID

S

+

b

ID

S

*

c

ID

S

B

S

A

S

A = b + (c - (d + e * f) / g) * h / i ;

Q-4 16 marks

Read this whole question carefully. On the back of the previous page, write a set of C language recursive descent parsing functions that recognize the fictitious grammar given below
: See NOTES.
<arraystmt> ('@' VAR '=' <unary> (',' <unary>)* ';'

<unary> (('-' <item>) | <item>

<item> ('(' <unary> ')' | CONST | VAR

No semantic actions are required; no Boolean nested error recovery is needed. The functions need only parse and recognize the input. A failure to parse the input must result in a call to error("…") that will cause the compiler to exit immediately with an appropriate error message. Give the appropriate error message as the string argument to each use of the error("…") function in your code. Keep it simple.

Assume the lexical scanner is named scanner(), the type of the current look-ahead token type is in a global variable named tt (token type), and that the error exit function is named error("…").

(Use these two functions in your parser; do not write them yourself.) Write only the functions that parse the above grammar. Invent reasonable names for the various terminal symbols in the grammar.

Q-5 3 marks

What are three goals of the error handler in a parser?

1.
Detect errors

2.
Report errors

3.
Don’t slow down regular translation

Q-6 2 marks

Briefly, what is the difference between error recovery and error repair in a parser?

Recovery: skip over input until a synchronizing point is found at which to resume parsing

Repair: try to change the input in some way so that it becomes possible to parse it
Q-7 6 marks

Name and describe very briefly three typical methods of error recovery used in compilers.

1.
Panic Mode: skip tokens until a synchronizing token is found at which point resume parsing

2.
Phrase Level: make local corrections to the input (add/delete tokens) to make it valid

3.
Error Productions: add grammar rules to handle errors
Global strategies: find the smallest change that generates correct input

a

a

d

c

b

a

d|b

 a

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

� EMBED OrgPlusWOPX.4 ���

�PAGE \# "'Page: '#'�'" �asst(){

	if (tt != '@')

		error("missing @");

	scanner();

	if (tt != VAR)

		error("missing VAR");

	scanner();

	if (tt != '=')

		error("missing =");

	scanner();

	unary();

	while(tt == ','){

		scanner();

		unary();

	}

	if (tt != ';')

		error("missing ;");

	scanner();

}

unary(){

	if (tt == '-')

		scanner();

	thing();

}

item(){

	switch(tt){

	case VAR:

	case CONST:

		scanner();

		break;

	case '(':

		scanner();

		unary();

		if (tt != ')')

			error("missing)");

		scanner();

		break;

	default:

		error("expecting VAR CONST or (");

	}

}

CST8152 - Compilers - Section 010
Page 4 of 1

Midterm #2 - July 7, 1997

Ian D. Allen – Algonquin College

[image: image5.wmf]a

ID

S

+

b

ID

S

A

S

*

c

ID

S

B

S

[image: image6.wmf]A

ID

=

b

ID

F

T

+

(

c

ID

F

T

-

(

d

ID

F

T

+

e

ID

F

*

f

ID

F

T

E

)

F

/

g

ID

F

T

E

)

F

*

h

ID

F

/

i

ID

F

T

E

;

A

_929734848.bin

_952060113.bin

_929734637.bin

