

Algonquin College

CST 8152 - Compilers

Midterm #1B - February 12, 1997

14:00 - 14:50 - 50 minutes

Lecture Section 010 - Ian D. Allen

Identification

	

Your name:�
Ian D. Allen�
Please Print Clearly�
 �
�
�
�
�
�
�
Your student ID:�
Professor�
Your Lab Section:�
010�
�
Instructions

Read the whole test before you start. �Do the things you know best first. You have 50 minutes.

Answer questions in the space provided.�Hand in this entire test when you are finished.

No calculators or other aids are permitted.�This test is closed book.

Raise your hand if you have questions.�Do not leave your seat.

You may not be able to complete the entire test.�Remain calm. Answer as much as you can.

Marking Scheme

This midterm test is marked out of 100.

Marks for each question are listed beside each question.

Midterms and class quizzes count together for 40% of your final grade.

Your mark on this first midterm is part of that 40%.

�
 Q-1	26 marks

Print T in the box if the statement is True; print F if it is False. Correct answers are worth 1 mark each. No answer is worth zero marks. Incorrect answers are worth minus 1 mark (-1) each.

�
#define statements are not read by the C compiler itself. �
�
T�
�
�
(0|1)*01(0|1)* is a regular expression that matches all strings of zeroes and ones where a zero precedes a one.�
�
T�
�
�
(00)+ is a regular expression that matches only non-empty strings containing an even number of zeroes.�
�
T�
�
�
(000)+ is a regular expression that matches only non-empty strings containing an odd number of zeroes.�
�
F�
�
�
A successful parse means the input is semantically correct.�
�
F�
�
�
A typical token category for ’12.57’ is ’12.57’.�
�
F�
�
�
Any Regular Expression using the ‘+’ operator can be rewritten to use ‘*’ instead.�
�
T�
�
�
Finite State Machines can have an unlimited number of states.�
�
F�
�
�
Finite State Machines can have two edges leaving the same state labelled with the same label (character).�
�
T�
�
�
Finite State Machines may have more than one final (accepting) state.�
�
T�
�
�
Lexical analysis categorizes lexemes into grammar productions.�
�
F�
�
�
Lexical analysis is recursive to be able to handle nested parentheses.�
�
F�
�
�
Nonterminal symbols appear on the left-hand-side of grammar productions.�
�
T�
�
�
Nonterminal symbols in a grammar correspond to tokens, not lexemes.�
�
F�
�
�
Parsing handles type checking and type conversions, e.g. int to float.�
�
F�
�
�
Parsing is based on scanned lexemes in the language.�
�
F�
�
�
Regular expressions can be used to match strings of balanced parentheses.�
�
F�
�
�
Right-hand-sides of grammar productions contain only terminal symbols.�
�
F�
�
�
Scanners don’t know anything about the grammar of a language.�
�
T�
�
�
Terminal symbols in a grammar correspond to lexemes, not tokens.�
�
F�
�
�
The C Language string “\n\n” is compiled into five bytes, including the end NUL.�
�
F�
�
�
The leaves of a parse tree contain both terminals and nonterminals.�
�
F�
�
�
The standard I/O fclose() function returns zero on end-of-file or error.�
�
F�
�
�
The standard I/O fgetc() function returns an integer.�
�
T�
�
�
Transition Tables are indexed with current state and next state.�
�
F�
�
�
You can change state in a DFA without reading any input character.�
�
F�
�
Q-2	4 marks

What two restrictions are placed on a Finite State Machine to make it a DFA?

All outgoing edges labelled with an input character

No two edges leaving a given state have the same label

Q-3	4 marks

How does a compiler differ from an interpreter?

Compiler: Translates your language to the target language. Faster than an interpreter, since the target language is executed directly.

Interpreter: Creates a virtual machine on the target system that understands your language directly. Slower than a compiled language, since the interpreter has overhead running the virtual machine.

Q-4	3 marks

Rewrite the regular expression {capital}?{letter}+ without using either ‘?’ or ‘+’.�Use the special character ß to represent the empty string.

Any of:

{capital}{letter}{letter}* | {letter}{letter}*

({capital}{letter} | {letter}) {letter}*

({capital} | ß) {letter}{letter}*

Q-5	2 marks

With reference to the root nonterminal of a grammar and a sentence in the language, how does top-down parsing differ from bottom-up parsing?

Top-down: Starts at the root nonterminal and works its way down the grammar productions toward the leaves that are the terminals corresponding to the sentence in the language.

Bottom-up: Starts with the leaf terminals that correspond to the sentence and works its way up the grammar rules to the root nonterminal.

Q-6	5 marks

Draw the DFA that recognizes C Language double-quoted strings with \” and \n escapes, as programmed for Assignment 2.

�

Q-7	10 marks

Given the following regular expression describing a set of strings:

	a(a|b)*c(bc+)?a

Draw a DFA that matches exactly this expression (and nothing else).

�

 Give three examples of valid strings defined by this expression.� Make each example a different length.

aca

acbca

aaaaaabbbbabababcbccccccca, etc.

Q-8	5 marks

Write a recursive-descent-type C Language parsing function named compound() that can recognize the following grammar production. Assume your scanner is named scanner(), the current look-ahead token is named token, and that functions expression() and error() exist:

	<compound> (‘(’ <expression> (‘,’ <expression>)* ‘)’

compound()

{�	if(token != ‘(‘)�		error();�	scanner();�	expression();�	while(token == ‘,’){�		scanner();�		expression();�	}�	if(token == ‘)’)�		scanner();

else

error();

}�
Q-9	20 marks

The state-diagram of the FSM shown below was designed to recognize both unsigned integer and float numeric constants:

�

Construct a next-state table from the above diagram:

�
‘.’�
‘+’|’-‘�
‘E’�
{digit}�
{OTHER}�
�
�
�
START�
2�
ERR�
ERR�
1�
ERR�
�
�
�
1�
2�
INT�
INT�
1�
INT�
�
�
�
2�
FLOAT�
FLOAT�
3�
2�
FLOAT�
�
�
�
3�
ERR�
4�
ERR�
5�
ERR�
�
�
�
4�
ERR�
ERR�
ERR�
5�
ERR�
�
�
�
5�
FLOAT�
FLOAT�
FLOAT�
5�
FLOAT�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

On the back of the previous page, write a C Language function based on the above table that takes an input character and returns the appropriate table column-subscript in the above table. Specification: int col_sub(char chr);

Q-10	3 x 7 = 21 marks

For each of the three main parts of the front end of a compiler:

Name the part.

Briefly describe its purpose and function.

Describe the type of input it handles and from where the input comes.

Give two C Language examples of errors that would be detected by this part.

Name of part:�
Lexical Analyser - Scanner�
�
Purpose/

function:�
recognize lexemes (by grouping individual characters) and classify the lexemes into tokens for the Parser�
�
Type and origin of input:�
reads individual characters from a source text�
�
C error #1:�
12abc�
�
C error #2:�
get$str()�
�

Name of part:�
Syntax Analyser - Parser�
�
Purpose/

function:�
recognize a correctly ordered sequence of tokens by building a Parse Tree representing the grammar of the input sentence�
�
Type and origin of input:�
reads tokens from a lexical analyser�
�
C error #1:�
a = b + ;�
�
C error #2:�
a b = 27 ;�
�

Name of part:�
Semantic Analyser�
�
Purpose/

function:�
ensure that the Parse Tree is meaningful; perform type checking, conversions, etc.�
�
Type and origin of input:�
analyses a Parse Tree built by the Parser�
�
C error #1:�
int array[12.34];�
�
C error #2:�
int array[10]; int array[10];�
�

CST 8152 Midterm #1 - February 12, 1997		Page � PAGE �6�

