
CST8177 – Assignment 3
Lock/Unlock Accounts

Objectives
1. To understand how to plan and design a system administration script;
2. To design a Test Plan for testing the script to ensure that it operates

correctly, and doesn't allow erroneous actions;
3. To write a brief User's Guide for the completed script;
4. To understand how to write and debug a script;

Submission
This project requires only one submission, a paper-based submission in your
lab teacher's physical dropbox. The submission has to be stapled and need
not be submitted in an envelope.
The submission contains:

• Cover page listing course information, lab information and student
information (see the submission standard on the course web site).

• Table of contents.
• The following analysis and design files:

• Your restatement of the problem: the Requirement.
• Your Analysis of the problem for your proposed solution,

consisting of at least:
• Lists of all your stderr messages and logger output and

the conditions where they can occur.
• Samples of your normal stdout messages, including

prompts for input.
• Data Dictionary for each script or function's key variables;
• PDL for each script or function.

• A brief description for a system administrator to use your script (How-
To or User's Guide – only a page or so);

• A complete, commented, and properly indented printed copy of your main
script, and all functions or source files necessary to execute it without error.

• Your Test Plan for confirming correct operation, and demonstrating the
detection of errors. Each test will consist of a test id, the exact input to be
used, the (brief) purpose of this test, and the expected result

• Your Test Plan results (a typescript from script) for confirming correct
operation, and demonstrating detection of errors, plus:

• Test input files and the portions of system files for added test users.
• If you build testing scripts, provide them and the design and data files.

Plagiarism
Plagiarism will not be tolerated. College plagiarism policy will be strictly
enforced, although you may submit your solution as a team of two. You can
even work in a larger group, but each pair or individual must prepare their
own solution and submit only their own work. Luckily (for me), copied code
is not difficult to identify. It's almost as though you leave fingerprints or
DNA fragments on your work.

Background
Problem description

For this assignment, you will be the system administrator of a fictional
company called AlgoTech, a medium-sized software development company.
As such, you are in charge of the user accounts on the company-wide
computer complex, which is implemented as a Fedora Linux server cluster.

Your supervisor has realized that for some business reasons, a large amount
of sysadmin time is taken up with locking and later unlocking user accounts.
She asks you to develop a simple script to improve the automation of lists of
accounts, making use of the passwd -l and passwd -u commands.

Proposed solution
There will be a single script used as the CLI tool (note: you may choose to
build the solution as several scripts or functions to minimize duplicate code,
but the user will only operate with one apparent script) named lock (to lock
accounts) with a hard link with the name unlock (to unlock accounts). Both
entries will reside in and run from the directory /usr/local/sbin.

The command line for this script will support all of these three forms:

1. Prompt for and read in any number of account ids from stdin (one per
line) to be locked or unlocked; detect end-of-file (Control-D) in order
to terminate the script. This is the no arguments case.

xxx# lock
Enter Account: user123
Enter Account: ^D
Accounts user123 locked
xxx#

2. The filename (and optional path, absolute or relative) given is read
and each user account id (one per line) is locked or unlocked. This is
the exactly 2 arguments case.

xxx# lock -f accounts.text
Accounts user567 user678 locked
xxx#

where accounts.text is:

user567
user678

3. Use any number of arguments supplied as account ids to be locked or
unlocked. There is no practical limit to the number of account ids that
can be supplied as long as the command line does not exceed 256
characters total. This case has at least 1 argument.

xxx# unlock user123 user234 user345 user456
Accounts user123 user234 user345 user456 unlocked
xxx#

Note these restrictions:

• The only user who can use this script is root. Reject any other user.

• An account must be valid. That is, there must be a valid entry in the
password file for each account id to be locked or unlocked. Each
account must have a valid password.

• The account must not already be locked (for lock) or must already be
locked (for unlock) prior to the script's action.

• Ensure that each error is logged to stderr and also to the log file
/var/log/acct-lock. Each successful lock or unlock must also be
recorded in /var/log/acct-lock, each entry marked with a
distinctive tag for ease of searching for entries (locked OK, unlocked
OK, locked error, unlocked error, etc.) suitable for the production of a
weekly report (no reporting script is required in this assignment).

Sample Logic Summary
You may use this as an outline of the logical for solving this problem, or you
may create your own (Steps 1 to 3 from Section A of the Method below).

• Reject user if not root

• Use command-line arguments to determine input method:

• If no arguments, read list of accounts one at a time from stdin

• If 2 arguments and the first is -f, read the list of accounts one at
a time from the second argument as a file

• Otherwise, use the arguments as the list of accounts

• In each case, process each item of the list of accounts as follows:

• Make sure account exists

• Examine password for valid-locked or valid-unlocked

• If command is lock and password is valid-unlocked, lock it

• If command is unlock and password is valid-locked, unlock it

• Issue messages and log information as required.

Method
Section A – Analysis and Design

Use the method provided below to work through the steps for solving this
problem:

1. Write down all the things your script has to do in a point-form list;
2. Re-arrange them as necessary to get a reasonable sequence;
3. Add in details about tests and loops;
4. Identify all the messages and prompts you need and where to read

any answers, and determine the structure of any data files you need;
5. Walk through your refined list and check it against the problem as

given - you may have to add further details or re-arrange items;
6. Now write the PDL in good pseudocode from the list in step 5;
7. Walk through the pseudocode and check it for accuracy and

completeness, repeating steps 6 and 7 until you're satisfied;
8. Make a list of all the variables you will need and what data they will

contain Data Dictionary), and create your data files from step 4;

Section B – Building the script

Use the method provided to write and test the script:
1. Write your script from the PDL, a few lines at a time and not the whole

script at once, and test it at every step. It is much simpler to test and
correct a script a few lines at a time than it is to write a long script
and debug it all at once.

a. Use the final PDL and information from your Data Dictionary
and input/output text to translate every few lines into script. You
may wish to leave in your PDL statements as comments;

b. Test your script so far (small chunks of code are easier to check
than big blocks) - you may need to add script lines and echo
statements to make your partial script work;

2. Repeat steps 1a and 1b until your script is complete;
3. Finally, test it thoroughly against the original problem statement (this

is not the Test Plan).
Be sure to make frequent back-up copies while you're working.

Section C – Testing and Using Test Results

Your Test Plan is not complete after you first create it during Analysis and
Design. You will come across concerns and issues while you are writing
your script and get an unexpected result. Go back immediately and update
your Test Plan (and your PDL, if your logic changes).

Each test consists of a test id, the actual input, the purpose of this test, and
the expected result. Start with test number 1, and continue test by test until
the actual output does not match your expected output. Find and correct
the defective part of the script (or correct this test if it's a Test Plan error).
Resume at test 1, since you can't tell if new errors have been introduced.

Continue until you have completed a successful execution of every test. Use
the script typescript command to make a file of this successful run of your
Test Plan for inclusion in your submission.

