CST8177 - Lab #5

	Student Name:
	Student Number:
	Lab section:

	
	
	

Working with Regular Expressions (aka regex or RE)

In-Lab Demo - List all the non-user accounts in /etc/passwd that use /sbin as their home directory. State the purpose of each field in a password file entry - see passwd(5).

Overview

· Regular expressions are used for pattern matching.

· Regular expressions are interpreted by specific utilities, such as grep, and not by the shell. To prevent the shell from interpreting special characters, since some are the same ones the shell uses, use quotes when passing a regular expression as an argument.

· Examples:

· grep ro*t /etc/passwd

· grep 'ro*t' /etc/passwd

· Regex metacharacters are different from file glob (wild card) metacharacters (although some, notably *, are the same character).

· grep stands for global regular expression and print, derived from the Unix text editor ed construct g/re/p.

· It will always match the FIRST and LONGEST string.

Summary of regexes of the basic set

	
	Meaning

	.
	Matches any single character (except newline, 0x0A).
Example: ro.t matches root, robt, ro3t, ro@t, and so on
Note: The newline is not considered a printable character.

	*
	Matches zero or more of the preceding item (unlike in a file glob, it cannot stand alone; it always modifies the previous item)
Example: the pattern ro*t matches rt, rot, root, rooot and so on for any number of o (but no other letter).

	[...]

	Matches any single character in the list (like file glob).
Example: l[io]ve matches live or love but not lave or lrve
Note: Ranges like a-z or 0-9 are valid as long as the start is lower in the ASCII list than the end ([0-2] is OK, [2-0] is not). Use LC_ALL=C. To use the range indicator - as a match character, escape it as \-.

	[^...]
	Matches any character not in the list.
Note: If a caret (^) is in a [...] list but not at the beginning, it is interpreted as being just a normal character. It can also be escaped by \.

	\(...\)
	Group into an item. Used with \|, select one item from a list

	\{n,m\}
	Match the preceding item at least '\{n\}' or more times; or exactly '\{n,\}' times; or using \{n,n\}, from n to m times.

	^
	Anchors the regex at the beginning of the line if the caret is the first regex character.
Example: These will provide different output:

grep 'root' /etc/passwd

grep '^root' /etc/passwd

	$
	Anchors the regex at the end of the line if the dollar sign is the last regex character.
Example: These will provide different output:

grep 'root' /etc/passwd

grep 'root$' /etc/passwd

	'^$'
	The regex to represent an empty line.

Exercise #1: Viewing regular expression output

Type the following 7 lines of text exactly in vi as the file lab4-re using the line-breaks given as [Enter] only (or copy/paste from the document, replacing [ENTER] and [TAB], and ensuring that exactly 7 lines result):

How to Please your Technical Support Department[Enter]

Tip:[Enter]

When you call us to have your computer moved, leave it buried under postcards and family pictures.[Enter]

We don't have a life and we are deeply moved when catching a glimpse of yours.[Enter]

[Enter]

Thank you![Enter]

[Tab]Your IT Department (Call 555)[Enter]

Type the following commands (omit the comment - # and following), and record the line numbers 1 to 7 only, to observe the result of the commands. Note: The -n switch of grep displays the line number in addition to the line found, if any.

Example: grep -n '^root:' /etc/passwd # also try with another user id

· grep -n '.' lab4-re # matches any line with any single char anywhere

__

· grep -n '\.' lab4-re # matches any line with a (literal) period

__

· grep -n 'T' lab4-re # matches any line with the character T

__

· grep -n '^T' lab4-re # matches any line beginning with the char T

__

· grep -n '^[A-Z]...$' lab4-re # Match 4-letter line starting upper case

__

· grep -n '^[A-Z][a-z]*:' lab4-re # Matches any alpha line with a colon

__

· grep -n '^$' lab4-re # Matches any empty line

__

· grep -n '[Ii][Tt]' lab4-re # Matches any line with IT, it, It, iT

__

· grep -n -i 'it' lab4-re # Also matches as above

__

· grep -n '[0-9]' lab4-re # matches any line containing a number

__

· grep -n 'call' lab4-re # matches any line with the string

__

· grep -n 'ca.*l' lab4-re # matches 0 or more char between 'ca' and 'l'

__

· grep -n 'cal*' lab4-re # matches 'ca' followed by 0 or more 'l's

__

· What is the difference between the last 2 regexes: They both use c, a, *, and l?

__

Exercise #2: Searching a system file using grep

Use grep to search the password file for specific strings using regular expressions. As root, make a backup copy of your /etc/passwd file and create an account for each of the following users: afoo, foo, foobar. Read the information in man 5 passwd for details of the password file and its colon-separated fields, and man 5 shadow for the shadow password file. Hint: Anchor your regex on something solid, like the start or end of the line, or on the colon-separators, or both.

Record the regex and the output for each of the following actions:

· Display root's account (only one line of output)

· Display foo's account (only one line of output)

· Display foobar's account (only one line of output)

· Display all accounts with /sbin/nologin as the shell (7th and last field) - list the userids

· Display all accounts with /home as the parent home directory (6th field) - list the userids

__

· _Search all accounts in the password or shadow file that have no valid password - list the userids; which file?

· Search all accounts in the password or shadow file that have a locked password - list the userids; which file?

Exercise #3: Extended REs

Some examples using the extended regular expression set: ORing

To work with the extended regular expression set, use egrep instead of grep. The pipe symbol is the regex OR operator and allows you to look for more than one pattern, in the form (pattern-1|pattern-2|...|pattern-n). This OR is the inclusive or, and results in true if this or that or both are true. That is, if you evaluate a | b logically, when either a is true or b is true or both are true, the result is true.

Example: egrep '^(root|bin):' /etc/passwd

· Compare the example above with egrep '(root|bin):' /etc/passwd. If the results are different, why is this so?

· Display all accounts with group id of 100 or 500: egrep "^[^:]*:[^:]*:[^:]*:(100|500):" /etc/passwd | cut -d : -f 1

· Why or how does this regex work?

· Display all accounts with group id 0 to 100 (that is, a 1-digit number, or a 2-digit number, or a 3-digit number starting with the digit '1'):
egrep "^[^:]*:[^:]*:[^:]*:([0-9]|[0-9][0-9]|100):[^:]*:[^:]*:[^:]*$" /etc/passwd | cut -d : -f 1

__

· Try this again with egrep "^[^:]*:[^:]*:[^:]*:([0-9]|[0-9][0-9]|100):" /etc/passwd | cut -d : -f 1

__

· Why or how does each regex work?

Working with some grep options

The grep utility has a number of options. Some of the most frequently used (there are lots more) include:

	-c
	displays a count of matching lines

	-i
	ignores the case or letters in making comparisons

	-n
	displays line number

	-q
	quiet: used when scripts collect the exit status $? as a POSIX alternative to redirecting output to /dev/null

	-v
	inverts the search to display only lines that do NOT match

	-w
	matches the string as a word

Experiment with the grep options above in addition to these samples.

grep -c "^" lab4-re

and

grep -c "$" lab4-re

How many lines are in the file lab4-re? Why or how do these regexes work?

__

What happens if you omit the regex and use grep -c lab4-re

__

grep -v "." lab4-re

Why or how does this regex work?

__

grep -v "\." lab4-re

Why or how does this regex work?

__

Using at least the -v option of grep, display only lines in lab4-re that do not contain the string "you". Show your grep command here:

__

Count all lines with the string "you" and separately, list only their line numbers. Show your two grep commands here (you may need to pipe grep's output to another utility):

__

__

Did any of your "you" matches surprise you? Which and why?

__

(You may have to pretend to be easily surprised!)

