
Introduction to the
bash Shell

(Bourne-Again SHell)

Commands, programs, scripts, etc.
Command
A directive to the shell typed at the prompt. It could
be a utility, a program, a built-in, or a shell script.
Program
A file containing a sequence of executable
instructions. Note that it's not always a binary file but
can be text (that is, a script).
Script
A file containing a sequence of text statements to be
processed by an interpreter like bash, Perl, etc.

Every program or script has a stdin, stdout, and
stderr by default, but they may not always be used.

Filter
A command that can take its input from stdin and
send its output to stdout. It is often used to transform
a stream of data through a series of pipes.
Scripts are often written as filters.
Utility
A program/script or set of programs/scripts that
provides a service to a user.
Built-in
A command that is built into the shell. That is, it is not
a program or script as defined above. It also do not
require a new process, unlike those above.

History
A list of previous shell commands that can be
recalled, edited if desired, and re-executed.
Token
The smallest unit of parsing; often a word delimited
by white space (blanks or spaces, tabs and newlines)
or other punctuation (quotes and other special
characters).
stdin
The standard input file; the keyboard; the file at
offset 0 in the file table.
stdout
The standard output file; the screen; offset 1 in the
file table.

stderr
The standard error file; usually the screen; offset 2 in
the file table.
Standard I/O (Numbered 0, 1, and 2, in order)
stdin, stdout, and stderr
Pipe
To make use a shell service (filters) that connects the
stdout of one program to the stdin of the next; the
"|" (pipe, or vertical bar) symbol.
Redirect
To use a shell service that replaces stdin, stdout, or
stderr with a regular named file.

Process
A process is what a script or program is called while
it's being executed. Some processes (called daemons)
never end, as they provide a service to many users,
such as crontab services from crond.
Other processes are run by you, the user, from
commands you enter at the prompt. These usually run
in the foreground, using the screen and keyboard for
their standard I/O. You can run them in the
background instead, if you wish.
Each process has a PID (or pid, the process
identifier), and a parent process with its own pid,
known to the child as a ppid (parent pid). You can look
at the running processes with the ps command or
examine the family relationships with pstree.

Child process
Every process is a child process, with the sole
exception of process number 1 – the init process.
A child process is forked or spawned from a parent
by means of a system call to the kernel services.
Forking produces an exact copy of the process, so it
is then replaced by an exec system call.
The forked copy also includes the environment
variables and the file table of the parent.
This becomes very useful when redirecting standard
I/O, since a child can redirect its own I/O without
affecting its parent.
Each command you type is run as a child of your shell
(however, see also the source command).

Parsing the command line
1.Substitute history
2.Tokenize command line (break it into

"words" based on spaces and other
delimiters)

3.Update history
4.Process quotes
5.Substitute aliases and defined functions
6.Set up redirection, pipes, and background

processes
7.Substitute variables
8.Substitute commands
9.Substitute filenames (called "globbing")

10.Execute (run) the resulting program

History
The command history is a list of all the previous
commands you have executed in this session with
this copy of the shell. It's usually set to some large
number of entries, often 1000 or more.
Use echo $HISTSIZE to see your maximum entries
You can reach back into this history and pull out a
command to edit (if you wish) and re-execute.

Some history examples
 To list the history:
System prompt> history | less

 To repeat the last command entered:
System prompt> !!

 To repeat the last ls command:
System prompt> !ls

 To repeat the command from prompt number 3:
System prompt> !3

 To scroll up and down the list:
 Use arrow keys
 To edit the command:
 Scroll to the command and edit in place

Redirection
Three files are open and available immediately
upon shell startup: stdin, stdout, stderr
These can be overridden by various redirection
operators
Following is a list of most of these operators
(there are a few others that we will not often use;
see man bash for details)
Multiple redirection operators are processed from
left to right: redir-1 redir-2 may not be the same
as redir-2 redir-1
If no number is present with > or <, 0 (stdin) is
assumed for < and 1 (stdout) for >; to work with 2
(stderr) it must be specified, like 2>

Operator Behaviour
Individual streams

< filename Redirects stdin from filename

> filename Redirects stdout to filename

>> filename Appends stdout onto filename

2> filename Redirects stderr to filename

2>> filename Appends stderr onto filename

Combined streams
&> filename Redirects both stdout and stderr

to filename

>& filename Same as &>, but do not use

&>> filename Appends both stdout and stderr
onto filename

>>& filename Not valid; produces an error

Operator Behaviour
Merged streams

2>&1 Redirects stderr to the same place
as stdout, which must already be
redirected

1>&2 Redirects stdout to the same place
as stderr, which must already be
redirected

Special stdin processing ("here" files),
mainly for use within scripts

<< string Read stdin using string as the
end-of-file indicator

<<- string Same as <<, but remove leading
TAB characters

<<< string Read string into stdin

Command aliases
To create an alias (no spaces after alias name)

alias ll="ls -l"
To list all aliases

alias or alias | less
To delete an alias

unalias ll
Command aliases are normally placed in your
~/.bashrc file (first, make a back-up copy; then
use vi to edit the file)
If you need something more complex than a
simple alias (they have no arguments or options),
then write a bash function script.

Filename Globbing: Metacharacters

Metacharacter Behaviour

\ Escape; use next char literally

& Run process in the background

; Separate multiple commands

$xxx Substitute variable xxx

? Match any single character

* Match zero or more characters

[abc] Match any one char from list

[!abc] Match any one char not in list

(cmd) Run command in a subshell

{cmd} Run in the current shell

Simple Quoting
No quoting:

System Prompt$ echo $SHELL
/bin/bash

•Double quote: "
System Prompt$ echo "$SHELL"
/bin/bash

Single quote: '
System Prompt$ echo '$SHELL'
$SHELL

Observations:
Double quotes allow variable substitution;
Single quotes do not allow for substitution.

Escape and Quoting
Escape alone:

Prompt$ echo \$SHELL
$SHELL

Escape inside double quotes:
Prompt$ echo "\$SHELL"
$SHELL

Escape inside single quotes:
Prompt$ echo '\$SHELL'
\$SHELL

Observations:
Escape leaves the next char unchanged;
Double quotes obey escape (process it);
Single quotes don't process it (ignore it)

Filespecs and Quoting
System Prompt$ ls
a b c
System Prompt$ echo *
a b c
System Prompt$ echo "*"
*
System Prompt$ echo '*'
*
System Prompt$ echo *
*
Observation:

Everything prevents file globs

Backquotes and Quoting
System Prompt$ echo $(ls) # alternate
a b c
System Prompt$ echo `ls` # forms
a b c
System Prompt$ echo "`ls`"
a
b
c
System Prompt$ echo '`ls`'
`ls`

Observations:
Single quotes prevent command processing

Summary so far
Double quotes allow variable substitution

"$SHELL" becomes /bin/bash
Single quotes do not allow for substitution

'$SHELL' becomes $SHELL
Escape leaves the next char unchanged

\$SHELL becomes $SHELL
Double quotes obey escape (process it);

"\$SHELL" becomes $SHELL
Single quotes don't process it (ignore it)

'\$SHELL' becomes \$SHELL
Everything prevents file globs

"*" '*' * each become *
Single quotes prevent command processing

'`ls`' becomes `ls`

Escaping quotes
System Prompt$ echo ab"cd
> "
abcd
System Prompt$ echo ab\"cd
ab"cd
System Prompt$ echo 'ab\"cd'
ab\"cd
System Prompt$ echo "ab"cd"
> "
abcd

More quote escapes
System Prompt$ echo "ab\"cd"
ab"cd
System Prompt$ echo don't
> '
dont
System Prompt$ echo don\'t
don't
System Prompt$ echo "don't"
don't
System Prompt$ echo 'don't'
> '
dont

Observations
Unbalanced quotes are not allowed

don't causes an error
Unescaped quotes are removed

"hello" becomes hello
Quoting protects quotes, as does \ escaping

"don't" and don\'t are the same, and OK
Single quotes are more restrictive than double

System Prompt$ echo '$USER' "$USER"
$USER allisor

A Short Script
To further examine command-line substitutions, it's of
considerable value to have a short script to do the
heavy lifting.
What do we need it to do?
It's got to look at each argument on the command line
from the first one to the last. Luckily, we can use the
special variable $# to find the last argument.
The list starts at argument 0, which is the command
itself, and each argument can be referenced in the
form $0, $1, $2, and so on.
We'll want to count each argument, both to display
each number and so we'll know when to stop. Stop
what? Ah, we're going to do the same thing over and
over, so that means we will need a loop.

Describe the Problem
GET the count of the arguments from $#
SET a counter variable to 0
SHOW how many arguments there are
LOOP for each argument (until our count is $#)
 SHOW the argument number
 SHOW the value of the argument
 COUNT how many arguments we have done
END LOOP
SHOW that we're all done

That's a sample of PDL, the Problem Description
Language that we'll use this semester (and all later
semesters) for scripting. Don't worry too much about
it just yet. Next slide is the already-written script.

System Prompt$ cat tt
#! /bin/bash
create count with starting value zero
declare count=0
show how many command arguments there are
echo Number of arguments: $#
while still command-line arguments, do this
while (($count <= $#))
do
 # show the arg number and its |value|
 eval "echo arg $count '|'\${$count}'|'"
 # count each argument processed
 let "count += 1"
end loop
done
echo all arguments evaluated
System Prompt$

What's that eval do?
Here's what is in man bash for eval (it's a built-in
command):

eval [arg ...]

The args are read and concatenated
together into a single command. This
command is then read and executed by the
shell, and its exit status is returned
as the value of eval. If there are
no args, or only null arguments, eval
returns 0.

Briefly, then, it constructs a command and then
executes it.

If we start with this:

eval "echo arg $count '|'\${$count}'|'"

and if $count has the value, say, 2, we next get:

eval "echo arg 2 '|'${2}'|'"

which eval executes as:

echo arg 2 '|'${2}'|'

giving us (for ./tt aa bb):

arg 2 |bb|

as our output line on stdout.

So, eval substitutes what it can ($count becomes
2, \$ becomes $) and executes the resulting string
(echo arg 2 '|'${2}'|') as a single command.

Some Sample Runs
System Prompt$./tt
Number of arguments: 0
arg 0 |./tt|
all arguments evaluated

System Prompt$./tt a
Number of arguments: 1
arg 0 |./tt|
arg 1 |a|
all arguments evaluated

System Prompt$./tt a b
Number of arguments: 2
arg 0 |./tt|
arg 1 |a|
arg 2 |b|
all arguments evaluated

System Prompt$./tt ab cd
Number of arguments: 2
arg 0 |./tt|
arg 1 |ab|
arg 2 |cd|
all arguments evaluated

System Prompt$./tt ab\ cd
Number of arguments: 1
arg 0 |./tt|
arg 1 |ab cd|
all arguments evaluated

To run this yourself, copy and paste the source into
a vi text file (vi tt; i for insert mode; select Paste
from the Edit menu; ESC). Save it (:wq) and set it to
be executable (chmod +x tt).

Filespec Args with Variable

Prompt$ export s="*"
Prompt$ echo $s
a b c tt
Prompt$ echo '$s'
$s
Prompt$ echo "$s"
*
Prompt$./tt s
Number of args: 1
arg 0 |./tt|
arg 1 |s|
all args evaluated

Prompt$./tt $s
Number of args: 4
arg 0 |./tt|
arg 1 |a|
arg 2 |b|
arg 3 |c|
arg 4 |tt|
all args evaluated

Other Commands
 You should also examine all the other commands

suggested in the lab document "60 Commands"
(on the course web site), filters like grep, cut
and tr, for example.

 You will need to know the basic behavior of
many of these commands for labs and
assignments, but many of the administration
commands we will address together.

 Feel free to refer to your textbooks and the man
pages for more insight. (Translation: that
actually means for you to look up what we've
discussed, read it over, and do some lab practice
with all the commands and services. Or else!)

