
CST8177

Files, directories, links,
and lots more

Files and directories are both the same sort of thing,
collections of records (or lines of text) or binary
data. The modern approach is hard-sectored or fixed-
size physical blocks.
Directories are simply a special case of files,
containing information about the files that are "in" it.
You can see much of this from the stat command,
but we're more accustomed to ls:
System Prompt$ ls -il sample-file
308527 -rw-rw-r--. 1 user1 user1 1249 2010-
01-10 21:28 sample-file
System Prompt$ ls -ild ~
302513 drwx------. 75 user1 user1 4096 2010-
09-12 16:19 /home/sample-dir
The -i option of ls shows the inode number, the
basis of the organization of many filesystems.

Sample file stat
System Prompt$ stat sample-file
 File: `sample-file'
 Size: 1249 Blocks: 16 ...
... IO Block: 4096 regular file
Device: 805h/2053d Inode: 308527 ...
... Links: 1
Access: (0664/-rw-rw-r--) Uid: (500/ ...
... user1) Gid: (500/ user1)
Access: 2010-09-10 14:20:09.000000000 -0400
Modify: 2010-01-10 21:28:25.000000000 -0500
Change: 2010-05-08 08:51:20.000000000 -0400

Sample directory stat
System Prompt$ stat ~
 File: `/home/sample-dir'
 Size: 4096 Blocks: 16 ...
... IO Block: 4096 directory
Device: 805h/2053d Inode: 302513 ...
... Links: 75
Access: (0700/drwx------) Uid: (500/ ...
... user1) Gid: (500/ user1)
Access: 2010-09-12 17:01:08.000000000 -0400
Modify: 2010-09-12 16:19:29.000000000 -0400
Change: 2010-09-12 16:19:29.000000000 -0400

File Naming Conventions

• upper and lower case letters, can be mixed
• digits
• underscore, dash, and period (aka dot or full

stop)
• up to 255 chars on modern versions
• case sensitive: demo.pdf, Demo.pdf, and
demo.PDF are not the same file

• a filename starting with a period (".") designates
a special file (sometimes called a "hidden file");
use the -a option of ls to list

• The filename "." alone designates the current
directory, whatever that happens to be ...

• While ".." designates the parent of the current
directory

more File Naming Conventions
● "extensions" are purely a convention for humans;

● unlike Windows, they mean nothing to Linux
● certain applications may choose to use particular

conventions; Python with .py and
gcc with its special extensions, like .c and .o

● Pathnames similar to Microsoft (but different!)
● directories in pathnames are separated by "/" (and

never "\"; backslash has a different meaning)
● "pwd" prints the (current) working directory
● "cd" changes to a new directory
● relative pathnames start with ".", "..", or a directory

name.
● absolute pathnames start at the root ("/") directory.

still more File Naming Conventions

● Your HOME directory is always at "~" (tilde). That is,
"~" as the start of a pathname represents the
current user's home directory. Does it count as
absolute or relative?

● there are no 'drives' (A: or C:) as in Microsoft
OSes. Instead there is a single tree-structure of
directories, with mount points for storage devices
(like /media/disk for a USB stick emulating a hard
drive).

● To execute a program from your current directory,
preface it with "./" so it can be found (this has
nothing to do with the slash-dot ("/.") web site.

● If you prefer, you can add "./" to your PATH:
PATH=$PATH:./

A Sample Directory Tree

● A sample absolute path could be

/def/def/jhi/some.file.or.another
● A sample relative path (from where?) could be:

../jkl/str/another.file
● Or if your HOME directory is /abc:

~/ghi/mno/my.own.file
● Is ~ a relative or an absolute path? Why?
● Every file and every directory (what is the

difference?) has a user and a group associated
with it.

● These are stored as the uid (user id) and the gid
(group id), where each is an integer number.

Manipulating Files and Directories
mkdir dirname

Creates a new directory.
rmdir dirname

Remove a directory (only if empty)
rm [options] filenames

Remove file (with -rf, also directories, empty or
not). The most useful options are -rf, which can
also be quite dangerous. The r causes rm to recurse
Through all directories, and the f (force) does not
ask permission before removing.

cd [directory]
Change to directory; with no directory given, it
defaults to current user's home directory.

pwd
Lists the full path of the current directory.

cat filenames
Catenate files to stdout/screen with no
formatting; list a text file's content (see also tac).

date [options]
Set or display the system date and time; see the
man page for details to use this.

cp [options] source destination
Copy files and directories. The -a option (archive)
is particularly useful for directories

mv source destination
Move files and directories: essentially copy plus
delete. mv is also used to rename a file in place.

find [options]
Searches the filesystem according to what you
need. It can be quite complex, and at the same
time extremely useful. We'll have to go over this
together in some detail. See also xargs.

whereis [options] command
Lists the paths for binary, source, man page for a
command for certain well-known directories.

locate [options] name
Reads a database usually updated daily for files.
It does not check if files found still exist and
never reports on newer files.

more [options] filenames
Like cat, but pauses at the end of every screenful
(page). Now often replaced by less.

df [options] [filesystem-list]
Reports filesystem disk usage; see man page.

du [options] dir-list
Calculates disk space usage for files and
directories or just a total if the -s option
(summary) is used. May seem slow since it reads
all directories recursively.

whoami
Displays the effective user ID (particularly useful
when switching from one user to another)

who [options]
Displays information about users who are currently
logged into the system, locally or remotely.

vi [options] filename
Standard command-line editor with multiple
options and extensive capabilities. Always
available in any level on any Linux/Unix system.

shutdown [option] when [message]
Stops all processes and safely brings the system
down, often for -h (halt) or -r (reboot). The when
argument is often "now", meaning right away, or
+m for an m minutes delay.

exit
Terminate the current shell process. Often used to
Leave a script. Can also be used to exit a shell
instead of Control-D (^D, stdin end-of-file).

telinit runlevel
Change the current runlevel. Must be root.

runlevel
Display the current and former init-process
runlevel or N if no former runlevel exists.

head and tail [options] filename
Lists the start or end of a file; see tail -f.

dmesg
Displays the critical content of logs for the last
boot sequence.

su [user] -
Superuser command, to change userid. The - or -l
option emulates login.

touch file-list
Updates the time and date stamp. If the file does
not exist, an empty one is created.

echo some text here > filename
The echo built-in displays its arguments on
stdout. By redirection, a non-empty file can be
created or replaced. With >>, the arguments are
appended to an existing file or behave like >.

ln [option] source destination
Creates links between files. If the -s (symbolic)
option is present, a soft link is created. Otherwise
a hard link is created within the current
filesystem (only!).

 Directories can be linked only by soft links.

Rights and File attributes
• access permission information is maintained for
all files and directories on the filesystem by Linux

• commands such as file allow Linux to determine
(or at least guess) what file type any file on the
system might be.

Example of directory listing:
 Type rights links owner group ...
 size Date/Time modified ...
 filename

drwxr-xr-x 2 root root ...
... 1024 Jul 9 10:10 files

-rwxr-xr-- 0 guest guest ...
... 5096 Apr 10 09:15 list.txt

Rights (permissions)
● 10 characters with file type as the first letter
● access modes (remaining letters)

Link count
● number of links to this file or directory

User-owner Login Name
● user who owns the file/directory
● based on owner UID

User-owner Group Name
● group who owns the file/directory
● based on owner GID

File Size
● size (in bytes or K) of the file/directory

Date/Time Modified
● date and time when last created / modified / saved

File Name
● actual file/directory name

File Types

Linux recognizes and identifies several file
types, which is coded into the first letter of the
first field of information about the file:

 - (dash)a regular file
 b block device special file

 c character device special file

 d a directory

 l a symbolic (soft) link

 p a named pipe or FIFO

 s socket special filename

File Access Privileges
● In Linux, 3 types of access permissions or

privileges can be associated with a file
– read (r) grants rights to read a file
– write (w) grants rights to create, write to,

or remove a file
– execute (x) grants rights to run the file (to

execute the file as a command)
● All 3 permissions can then be applied to each

of 3 types of file users
– User owner/creator of the file
– Group group to which user must belong to

gain associated rights
– Others Anyone else not User or not a part

of Group (we used to call it Rest-of-world)

File Access Privileges
In Linux, rights are typically referred to by their
octal equivalent, as seen below. This can then be
translated into an appropriate value for each of
the 3 user types

 values of 100’s for User
 values of 10’s for Group
 values of 1’s for Other

User Group Other

R W X R W X R W X

400 200 100 40 20 10 4 2 1

r w x Meaning
0 0 0 0 No permission
0 0 1 1 Execute-only permission
0 1 0 2 Write-only permission
0 1 1 3 Write and execute permissions
1 0 0 4 Read-only permission
1 0 1 5 Read and execute permissions
1 1 0 6 Read and write permissions
1 1 1 7 Read, write and execute permissions

Octal
Value

List of all octal values 0 to 7

Directory Access Privileges

The same three types of access permissions or
privileges are associated with a directory, but
with some differences:
– read (r) rights to read the directory
– write (w) rights to create or remove in

the directory
– execute (x) rights to access the directory

All three permissions can then be applied to
each of three types of directory users as before.
– User owner/creator of the file
– Group group to which user must belong
– Others everyone else (Rest-of-world)

Linux File Permissions
Three special access bits on files for extra control.
They can be combined as needed.

SUID - Set User ID bit

 Allows commands to change the “effective
user ID” to the one identified by the file's UID.
That is, commands runs as UID rather than as
the actual user.

chmod 4xxx file-list

chmod u+s file-list

Linux File Permissions
SGID - Set Group ID bit

 Allows commands to change the “effective
group ID” to the one identified by the GID.
Thus commands runs as GID rather than as
the user’s current group, much like suid/UID.

chmod 2xxx file-list

chmod g+s file-list

Linux File Permissions
sticky bit (restricted deletion flag)

 Must be the user-owner of a directory to be
able to set the sticky bit for it.

chmod 1xxx dir-list

chmod +t dir-list

The sticky bit prevents unprivileged users from
removing or renaming a file in the directory unless
they are the owner of the file or the directory; this is
commonly found only on world-writable directories
like /tmp.

Linux File Permissions
What permissions a user will have is determined:

 If the user the owner of the file and/or directory,
then the user rights are used.

 If the user is not the owner but is a part of the
group owning the file and/or directory, then the
group rights are used.

 If the user is neither the owner nor a part of the
group owning the file, then the other rights are
used.

● Once the access rights level is determined, the
actual rights (rwx) are then identified and used for
any command or process the user wishes to
implement on the file and/or directory.

Linux File Permissions
● The filesystem also uses the umask for default

rights assigned to created files.
 umask - display current UMASK
 umask xyz - sets new UMASK to octal

permissions, where x=user, y=group and
z=other permissions as usual.

● When a new file or directory is created by a user,
the system sets its access privileges based on the
user’s umask.
 file access = default permissions – umask
 It's actually a NAND, not a subtraction.

● Default access permissions are always:
– 777 for a directory or executable file
– 666 for any other files

Linux File Permissions
● It is important for the Linux file system manager

to maintain the information for each file and
directory, including
– ownership of files and directories
– access rights on files and directories
– The 3 timestamps seen in stat
– Location and sequence of each data block

● The information is maintained within the file
system information (inodesinodes) on the hard disk

● This information is used to determine every file
system action.

Linux Basic Admin Tools
chown owner[:group] files

 Change ownership of files and directories
(available for root only)

Examples:
chown guest:guest file1 dir2

● change ownership of file1 and dir2 to user guest
and group guest

chown guest dir2
● change ownership of dir2 to user guest but leave

the group the same
chown :guest file1

● change ownership of file1 to group guest but
leave the user the same (use chgrp instead)

Linux Basic Admin Tools
chmod permissions files

 Explicitlly change file access permissions
Examples:
chmod +x file1

● changes file1 to have executable rights for
user/group/other

chmod u+r,g-w,o-rw file2
● changes file2 to add read rights for user,

remove write rights for group and remove both
read and write rights for others

chmod 550 dir2
● changes dir2 to have only read and execute

rights for user and group but no rights for other

