

CST8177
Regular Expressions

What is a "Regular Expression"?

● The term “Regular Expression” is used to
describe a pattern-matching technique that is
used into many different environments.

● A regular expression (commonly called regex,
reg exp, or RE, often pronounced rej-exp or rej-
ex) can use a simple set of characters with
special meanings (called metacharacters) to test
for matches quickly and easily.

Regular Expressions (RE)

● At its most basic, a regex pattern is a sequence
of characters that matches the item being
compared:

Pattern: flower

Match: flower

And nothing else!
● A key thing to remember is that a Regular

Expression will try to match the first and the
longest string of characters that match the
pattern. This will sometimes give you a
surprising result, one you didn’t expect!

Once Again!

A Regular Expression will try to
match the first and the longest
string of characters that match

the pattern.

Sometimes this will surprise you.

● You may see Regular Expressions with forward
slashes around them: /flower/

● These slashes are a form of quoting, are not part
of the Regular Expression, and may be omitted in
most cases (some commands may require them,
though, or something similar).

● Do not confuse Regular Expressions with filespec
globbing.
● Even though some of the forms appear similar,

they are not the same thing at all:
/a*/ matches any number of a's (even 0)
ls a* matches all files in the PWD that begin
with a single a (at least 1)

● And watch out for Extended Regular Expressions,
or subsets for special purposes, PCRE, different
languages, and other confusions.

Using Regular Expressions

Q: So what if we want to match either

‘flower’ or ‘Flower’?

A: One way is to provide a simple choice:

Pattern: [Ff]lower

Match: flower or Flower

Unfortunately for the confusion factor, this closely
resembles [] in filespecs. Remember that it's
different, however.

Using Regular Expressions

Q: So the [square brackets] indicate that either
character may be found in that position?

A: Even better, any single character listed in []
will match, or any sequence in a valid ASCII
range like 0-9 or A-Z.

Just like file globs, unfortunately.

Using Regular Expressions

Q: Does that mean I can match (say) product
codes?

A: You bet. Suppose a valid product code is 2
letters, 3 numbers, and another letter, all
upper-case, something like this (C for a
character, 9 for a number):

CC999C

Using Regular Expressions

Pattern segments:

[A-Z][A-Z] Two Letters (Uppercase)

[0-9][0-9][0-9] Three Numbers

[A-Z] One Letter (Uppercase)

Giving a Pattern:

 [A-Z][A-Z][0-9][0-9][0-9][A-Z]

Good match: BX120R

Bad match: BX1204

Using Regular Expressions

Q: Good grief! Is there an easier way?

A: There are usually several ways to write a
Regular Expression, all of them correct.

● Of course, some ways will be more correct than
others (see also Animal Farm by George Orwell)

● It's always possible to write them incorrectly in
even more ways!

Matching Regular Expressions

● The program used for Regular Expression
searches is often some form of grep: grep itself,
egrep, even fgrep (fixed strings) and rgrep
(recursive), which are also grep options, etc.

● The general form is:

grep [options] regex [filename list]

● You will also see regexes in sed, awk, vi, and less
among other places

General Linux Commands
● This is indeed the general form for all Linux

commands, although there are (as always) some
exceptions:
command [flags & keywords] [filename list]

● That is, the command name (which might
include a path) is followed by an optional
(usually) set of command modifiers (usually) in
any order or combination, and ends with an
optional (often) list of filenames (or filespecs)

● In a pipe chain (cmd1 files | cmd2 | cmd3) of
filters, the filename list is commonly found only
on the first command.

Matching Regular Expressions
● grep is a filter, and can easily be used with stdin:
echo <a string> | grep [options] <reg exp>

● Some useful options (there are more) include:
● -c count occurrences only
● -E extended patterns (egrep)
● -i ignore case distinctions
● -n include line numbers
● -q quiet; no output to stdout or stderr
● -r recursive; search all subfolders
● -v select only lines not matching
● -w match "words" only (be careful: what

constitutes a word?)

Regular Expression Examples

● Count the number of "robert"s or "Robert"s (or
any case combination) in the password file:

grep –ic robert /etc/passwd
● List all lines with "Robert" in all files with

"name" as part of the file name, showing the line
numbers of the matches in front of each
matching line:

grep -n "Robert" *name*

 Metacharacters
. Any single character except newline

[…] Any character in the list

[^…] Any character not in the list

* Zero or more of the preceding item

^ Start of the string or line

$ End of the string or line

\< Start of word boundary

\> End of word boundary

\(…\) Form a group of items for tags

\n Tag number n

\{n,m\} n to m of preceding item (plus others)

\ The following character is unchanged,
or escaped. Note its use in [a\-z],
changing it from a to z into a, -, or z.

 Metacharacters

Note that repeating items can also use the forms
\{n\} for exactly n items; and
\{n,\} for at least n items.
Ranges must be in ascending collating sequence.
That is [a-z] and [0-9] are valid but [9-0] is not.
Note that you may have to set the correct locale. We
will use LOCALE=C for our collating sequence.

Extended metacharacters
(used, for example, with egrep)

+ One or more of the preceding item

? None or one of the preceding item

| Separates a list of choices (logical OR)

(…) Form a group of items for lists or tags

\n Tag number n

{n,m} Between n and m of preceding item

Many of the extended metacharacters also exist in
regex-intensive languages like Perl (see PCRE). Be
sure to check your environment and tools before
using any unusual extended expressions.

Tags
● sed is the stream editor, handy for mass

modifications of a file.
● Tags are often used in sed to keep some part of the

regex being searched for in the result.
● Imagine you have a file of the part numbers above

and you need to replace an extra digit with the
letter 'x'. The regex for this kind of bad entry is

[A-Z]\{2\}[0-9]\{3\}[0-9]

so the full command is

sed 's+\([A-Z]\{2\}[0-9]\{3\}\)[0-9]+\1X+' \
data > data.1

● The 's' operator for sed means substitute, but there
are more available. See man sed for details.

Tags

● Tags in grep may not be as obvious to use.
However, here is an example.
echo abc123abc | grep "\(abc\)123\1“

● Think of tags as the STR or M+ and RCL keys on
your calculator

● STR/M+ as a regex \(...\) \(...\)
● RCL as a regex \1 \2
● You can have up to 9 "memories" or tags in any

one regex.

Tags
● Tags can be used with grep and its variants, but

they are often used with tools like sed:
sed 's/\([0-9][0-9]*\)/\1\.0/g' \

 raw.grades > float.grades
will insert .0 after every string of digits in the
raw.grades file.

● There are, as usual, other ways to do this in sed,
including:

sed 's/[0-9][0-9]*/&\.0/g' \
 raw.grades > float.grades

● I recommend you use the first style for now.

Note on sed

sed 's/\([0-9][0-9]*\)/\1\.0/g' raw.grades
● Note that sed's delimiter is the character that

immediately follows the command option s; it
could be any character that doesn't appear in
the rest of the operand, such as

sed 'sX\([0-9][0-9]*\)X&\.0Xg' raw.grades

or as first used in the example

sed 's+\([0-9][0-9]*\)+&\.0xg' raw.grades
● The g after the last delimiter is for global, to

examine all matches in each line; otherwise,
only the first match is used.

[:alnum:] a – z, A - Z, and 0 - 9

[:alpha:] a - z and A - Z

[:cntrl:] control characters (0x00 - 0x1F)

[:digit:] 0 - 9

[:graph:] Non-blanks (0x21 - 0x7E)

[:lower:] a - z

[:print:] [:graph:] plus [:space:]

[:punct:] Punctuation characters

[:space:] White space (newline, space, tab)

[:upper:] A - Z

[:xdigit:] Hex digits: 0 - 9, a - f, and A - F

Bracketed Classes

These POSIX classes are often enclosed in [] again.
Check for a char at the end of a line: /[[:print:]]$/

● The previous items are part of the extended set,
not the basic set. A few more in the extended set
that can be useful:

\w [0-9a-zA-Z]

\W [^0-9a-zA-Z]

\b Any word boundary: \< or \>

Examples

Area code: ([0-9]\{3\})

Spaces: *

Exchange: [0-9]\{3\}

Dash: -

Number: [0-9]\{4\}

Basic pattern for a phone number:

(xxx) xxx-xxxx

^([0-9]\{3\})_*[0-9]\{3\}-[0-9]\{4\}$

(The underscore _ is used to represent a blank)

Another Example

Extended pattern for an email address:

 xxx@xxx.xxx

^\w+@\w{2,}\.[a-zA-Z]{2,4}$

Personal ID: \w+

At: @

Host: \w{2,}

Dot: \.

TLD: [a-zA-Z]{2,4}

One Last Example

Extended pattern for a web page URL (regex folded)
http://xxxx.xxx/xxxx/xxxx.xxx

http://
(\w{2,}\.)+[a-zA-Z]{2,4}(/\w+)*/\w+\.html?$

Prefix: http://

Host: (\w{2,}\.)+

TLD: [a-zA-Z]{2,4}

Path: (/\w+)*

Filename: /\w+

Dot: \.

Extension: html?

