
CST8177 – Linux II

Linux Boot Process

Reference information from the text,

 http://www.linuxdoc.org
and several other web sites

Linux Boot Process

Topics covered in this slide-set
• Basic definition of the boot process
– Description of boot loader(s)
• P.O.S.T., BIOS & MBR
• LILO vs GRUB

– Typical Boot Loaders
• Using LILO
• Using GRUB

– The Linux boot process in detail
– The different ways of booting Linux
– Boot disks and other critical recovery

mechanisms

Linux Boot ProcessLinux Boot Process

From the standpoint of any O/S, the very first part of
the operating system boot process is what’s
commonly called the Boot Strap process.

● the O/S loads itself and all required components
and drivers into memory to allow processes to
communicate with the kernel.

● Once this is done, other applications, drivers
and necessary tools for the function of the O/S
can be loaded.

However, that’s an incomplete view of the boot
process. Several steps, at the hardware level, have
to successfully before any of the "Boot Strap"
process(es) can even begin.

Linux Boot ProcessLinux Boot Process
The steps that are required prior to the boot process
include (see previous courses):
• P.O.S.T.

• Power On Self-Test
• Core hardware verification and testing
• CMOS verifies its stored settings

● CMOS examines the list of physical devices for the
first boot device available with a boot-sector enabled
on it (called MBR or Master Boot Record).
This address contains code to load the O/S kernel or
a boot loader to load the O/Ses available to it.
This loading of the initial kernel O/S code from the
physical address given by the CMOS is called the
Boot Strap Process.

Boot LoaderBoot Loader
• Linux boot loader
– Resides in the MBR or in the Linux boot (/boot)

directory (or partition) on the system
– It's the first code to run when the MBR is

accessed on the boot drive by BIOS after the
P.O.S.T. process is completed

– boots Linux and/or any other boot partition
bootstrap-capable O/S available, so long as they
are listed in the boot loader’s configuration file

– can also allow users to pass various parameters
to the kernel before loading the kernel.

• Boot loader is typically installed during installation
or by booting to a Linux partition (using a bootable
device), configuring the boot loader, and installing
the boot loader manually.

Linux Boot Loader

• N.B. The boot loader doesn’t have to support a
filesystem to access a file on it if it has a list of
sectors for the file and is prepared to handle the
BIOS interrupts. Thus, it can access files without
having to mount them.

• A boot loader is not required in order to run
Linux if it is the only O/S on the system or by
using alternative boot methods (floppy, CD or
DVD, boot EPROM, USB device, network, etc) or
using the loadlin Linux loader.
A boot loader can certainly make it easier to
manage multi-boot capabilities with other
operating systems and/or multiple versions of a
kernel on the same system.

Linux Boot LoaderLinux Boot Loader
• Linux boot loaders in use today include LILO and
GRUB. If no boot loader is used, then loadlin acts
as the boot sector loader.

• LILO: LInux LOader
– UNIX text-based boot loaders adapted for Linux
– very structured config file /etc/lilo.conf
– limited security features

• GRUB: GRand Unified Boot-loader shell
– modern replacement for LILO
– more like a special-purpose shell than an boot

loader application
– text or GUI based interface and config
– structured config files in /boot/grub
– very good security features

Using LILO

• LILO can load any O/S, so long as it allows for
chain-loading the O/S from a specific boot sector on
the storage medium (which is true of most O/S)

• Access to LILO and to modify /etc/lilo.conf is
reserved to root for obvious reasons

• LILO can be installed:
– by booting to a Linux partition
– modifying the /etc/lilo.conf file to match

multiple boot settings
– running lilo to install it in the MBR
– the lilo -q command can be used to query LILO

about what images are currently defined and
which one is the default (marked *)

Using LILO

• LILO files:
● configuration file for LILO options and

settings
/etc/lilo.conf

● part of the source code for LILO
/boot/boot.b and /boot/chain.b

● binary executable
/sbin/lilo

● Documentation
/usr/share/doc/lilo-<version>

Using LILO
• Configuration file: /etc/lilo.conf
– general section
• for LILO and general kernel options
• general features and security options

– stanza (each boot partition definition)
• allows for multi-boot by defining a stanza for

each boot partition
• each stanza can contain specific options and

information on the particular boot partition
• Each boot partition requires its own stanza

to define its requirements and functions
– See grubby(8) and LILO HowTo’s for more

information on the structure and options
available for the configuration file and stanzas

Using GRUB
• GRUB is one of the more powerful boot loaders

available today.
• It contains some striking similarities with LILO in

its basic capabilities, but far surpasses it in
higher security, flexibility and overall
capabilities.

• GRUB can load more O/Ses than LILO. It can also
natively access most known filesystems without
the need to actually mount the filesystem in
question - which is a massive advantage.

• Access to GRUB and modifying its configuration
files is reserved to root for obvious reasons.

Using GRUB
• The main difference between GRUB and LILO:

– the menu interface (GUI or text available)
– the command line shell built into GRUB

• The GRUB shell can be accessed by the
administrator locally or remotely, and be used
to change parameters or stanzas temporarily
(i.e. for this one boot only) or permanently
within the configuration information.

• These simple features, and the capabilities
built into them, allows for a much higher
flexibility of design and purpose while still
allowing an easy navigation mechanism
between boot partitions for users.

Using GRUB
• GRUB :
– recognizes multiple executable formats
– supports non-multiboot kernels
– supports chain-loading other boot-loaders
– allows loading multiple kernel modules

– allows loading a human-readable text config file
– GUI/Graphical interface, but can run in text

mode.
– no preset limit on the number of menu options
– allows for dynamically modifying of

configuration and menu entries from the GRUB
command line interface before even selecting
any of the boot images

. . .

Using GRUB

• GRUB :
– support multiple filesystems types transparently
– supports automatic decompression of GZIP files
– access data on any installed device
– allows for loading an arbitrary O/S any way you

like without recording the physical position of
the kernel on the disk

– independent of drive geometry translations
– detect all installed RAM
– supports network booting
– supports remote terminals

And many more...

Using GRUB

GRUB sample config (/boot/grub/grub.conf)
with highlighted stanza:

grub.conf generated by anaconda
default=0
###timeout-0
timeout=10
###hiddenmenu
splashimage=(hd,0)/grub/splash.xpm.gz
password --md5 1a43gs^yGSzfghefqSD.

title Fedora (2.6.32...)
root (hd0.0)
kernel /vmlinuz-2.6.32... ro
root=/dev/hda7
initrd /initrd-2.6.32...img

Using GRUB

• Due to the complexity, and the extensive set of
commands and capabilities inherent to GRUB, we
will not go into details about how it all works.
GRUB has become the standard for boot loaders in
the Linux/UNIX community - in other words, it is
to your best advantage to learn about it !
For more information on GRUB, its configuration
and capabilities, visit:

 http://www.gnu.org/software/grub/manual/

Using GRUB
• GRUB error messages:
– If an error occurs in part of the boot process

under GRUB’s control, an error message is
generated, often with log information about it.

– GRUB can even allow the user to regain some
control of the system to attempt to debug the
problem without having to reboot.

– In most cases, however, the error information
generated will need to be investigated and
GRUB can then be restarted in interactive mode
to give information to the boot process manually
to fix or bypass the problem.

– Because GRUB is more than just a simple boot
loader, it provides more control and allows
direct manipulation of the process.

Linux Boot Process
• BIOS loads from the MBR or /boot directory
– The boot loader points to the appropriate boot

device for loading MBR info, based on the boot
image name selection at the boot loader prompt

– Updates the boot sector information, if needed
• Once Linux is selected, the kernel image loads
– The kernel image is mostly compressed, but an

uncompressed portion of kernel image contains
information on how to decompress the rest of
the kernel into memory

– The type of boot is dictated by entries in the
map installer configuration file

 /boot/System.map-...

Linux Boot Process
• Load the Kernel image (continued)
– Setup, decompression routines, and the

compressed kernel are loaded from the boot
device to the first megabyte of system RAM

– Kernel takes over memory control and the boot
process, decompressing the rest of itself into
memory on its own (bootstrap process)
• verifies kernel code content during

decompression
• Kernel is decompressed in protected mode

– Kernel then starts memory management in
linear (or flat) memory mode, releasing and
cleaning out the memory used back into the
free memory pool

Linux Boot Process
• Load the Kernel image (continued)
– Kernel then starts actual boot process
• completes read of /boot/System.map for the

remainder of information about the system
• verifies information gathered to ensure that

everything is where it should be and working
before accessing and using any of it

– Kernel displays messages to the system console
about the boot process while loading all the
required modules and services

– Kernel runtime messages are stored in
/var/log/messages
• The last relevant set of messages can also be

accessed with dmesg command (dmesg(1)).

Linux Boot Process
• Load the Kernel image (continued)
– Kernel contains several built-in parameters
• boot device parameter table
• device name to mount as root (/) filesystem

once booting is complete
• mode to mount root (/) filesystem as

(typically read-only at this stage)
– Kernel can also accept and process command

line parameters from the user prior to start-up
• allows for modifying defaults listed in

configuration files or passing parameters
only required for this particular boot session

Linux Boot Process

• Load the Kernel image (continued)
– Kernel runs the low-level initialization of various

hardware devices
• this is only true of hardware required for the

kernel to work properly and devices that
have been compiled into the kernel
(monolithic kernel) and not as modules

– Kernel mounts the root (/) filesystem in r/o
mode and verifies filesystem integrity
• If everything is okay, remounts in r/w mode
• If not, stops and has admin fix the problem(s)

Sample Sample /etc/fstab/etc/fstab

Prompt$ cat /etc/fstab
/etc/fstab
Created by anaconda on Tue May 25 12:47:22 2010
See man pages fstab(5), findfs(8), mount(8) and/or
blkid(8) for more info
#
UUID=89224b3e-1955-4cc9-99ab-7406377b7553 /
 ext3 defaults 1 1
UUID=748f4f67-2442-484a-be51-2b3270888185 /home
 ext3 defaults 1 2
UUID=2a54d895-135f-4403-b1e7-8751c93d3ca2 swap
 swap defaults 0 0
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0

Linux Boot Process

• Load the Kernel image (continued)
– Kernel then starts up the final internal

processes required for it to function
properly

– Kernel releases control to the init daemon
• System V init for RH Linux and Fedora;

other distros vary
• locates init daemon in /sbin directory

and starts it
– Kernel image remains in memory, with

loaded configuration information, until
system is rebooted or shutdown

Linux Boot Process

• init program
– general purpose program that spawns new

processes and restarts certain programs when
they exit, based on the signals they are given.

– init is responsible for:
• communicating between the kernel and all

other processes
• managing all processes currently running

and their parent / child relationship(s)
• running a series of initialization programs

and scripts when the system boots / starts-up
– Kernel is hardwired to run the init process no

matter what

Linux Boot Process
• init program (continued)
– each process spawned by init seeks any

required modules / processes
• based on known module dependency within

the process / module
• spawns any required modules in the

dependency listing
• if spawned modules have dependencies,

each module it is dependent on will be
spawned as well

– Determines the starting runlevel to use
(usually 5, for GUI) from the file /etc/inittab
• contains basic information about the

runlevels for processes
• more on runlevels soon

Linux Boot Process
• init program (continued)
– Runs the script /etc/rc.d/rc.sysinit for

necessary settings and processes
• it will run other scripts and read config files

for initializing different hardware capabilities
and other subsystems.

– Calls each /etc/rc S-scripts in numeric order:
• Runs all scripts for the current runlevel

from /etc/rc.d/rcX.d, where X=runlevel
• Script names match ^[SK][0-9]{2}.*

– Runs /etc/rc.d/rc.local for local settings
– once all modules are spawned, loaded, and

executed properly, control is returned to the
kernel for next stage

Linux Boot Process
• System startup files
– stored in /etc/rc.d in Fedora and Red Hat
– managed by script file called rc in /etc/rc.d
– rc looks in /etc/rc.d/rcX.d directory for
Knnxxxx and Snnxxxx script files to run:
• nn - 00 to 99: defines the run sequence
• xxxx - process short name
• K - indicates process to kill
• S - indicates process to start

– Knnxxxx and Snnxxxx are all symbolic links to the
actual scripts in the /etc/rc.d/init.d directory.
The K or S simply tells the rc script what
parameter to pass to the script file in
/etc/rc.d/init.d directory - start or stop.

Linux Boot Process

• System startup files - rc (continued)
– The order in which each service is stopped or

started is critical due to interdependencies
between some of them

– init runlevels can be edited manually or by
using one of ntsysv (text-GUI terminal script),
chkconfig (terminal text), or the system-
config-services (GUI) tool to configure
services to be started and stopped by runlevel.

– Both ntsysv and system-config-services sort
services in an appropriate order defined by the
dependencies and the system and create
required links.

– You will have to be able to use chkconfig.

Linux Boot Process

• init starts the user login system
• After login, user startup scripts are executed
– looks in home directory for .filename scripts,

which are user configurable managed scripts
for user settings and preferences

• The shell from /etc/passwd is then spawned with
associated user-specific scripts and settings.
– .bash_profile and other similar or shell

related scripts are executed prior to the shell
prompt being displayed

• Others .filename scripts, such as .Xdefaults, are
run by specific processes when they are started up
to determine the user’s preferences

Booting Linux
• Several ways of booting Linux on your system
– booting from a hard disk or USB device
• compressed kernel image is on the Linux

partition, which can be loaded either directly
or through a boot loader, such a GRUB
• kernel loads all required information from

hard disk as it loads itself into memory
– booting from the Linux CD-ROM or DVD
• The disc contains a compressed kernel image
• Contains basic configuration files in /boot

and /etc directories to allow basic system
• kernel may still point to hard disk (normal

boot) or load everything it needs from the CD
(Rescue Disk or Live CD/DVD)

Linux rescue disk

• Each Linux distro can create a rescue disk
– generally not system specific
– could be CD-ROM, DVD, or USB device
– contains its own minimalist version of the

kernel, key administration tools, and a shell
– Gives an admin the tools required to fix a

broken system without re-installing
– allows for mounting filesystems on the system

with or without entries in the /etc/fstab file
– utilities and tools included varies from version

to version, but by mounting undamaged existing
partitions, installed applications can also be
accessed and used

Linux Run Levels
• For the purpose of understanding how init

works, the concept of the runlevel is used.
• They act as a method to define what processes

are started / stopped, and what users are
capable of doing.

• There are 10 runlevels available (0-9). Fedora
currently uses 7 of them (0-6).

• Processes and services are associated with a
single runlevel at any one time, but can exist
in different runlevels concurrently.

• The system can only exist in one runlevel at a
time. The runlevel to use at startup is
determined by the rc script set from the
information in the /etc/inittab file

Linux Run Levels

• Runlevels are being updated/replaced by
UpStart, but are still valid (so far)

• Default Runlevel definition for most distros
– Runlevel 0 - Halt
– Runlevel 1 - Single user mode
– Runlevel 2 - Multi-user mode, without NFS
– Runlevel 3 - Full multi-user mode (no GUI)
– Runlevel 4 - undefined
– Runlevel 5 - Full multi-user mode (GUI)
– Runlevel 6 - Reboot
– Runlevel 7 - undefined
– Runlevel 8 - undefined
– Runlevel 9 - undefined

Linux Scripts
• Shell Scripts
– ASCII text files containing shell commands, data

manipulation and environment settings
– Interpreted by a command shell (bash, sh, csh

and tcsh, ksh, etc...)
– Uses typical commands and utilities available

on the system, along with shell built-ins
– Each shell varies in its methods and built-in

commands, but the basics remain very similar
– Designed to perform a set of commands and

settings repeatedly and quickly
– Same commands used in shell scripts could

easily be typed in from the command line, but
script file acts like an intelligent batch file

Linux Scripts
• Special-purpose language scripts
– Can also use scripting languages (PERL, Tcl/Tk,

Python, etc…) if the interpreter is installed
– Usually doesn’t need to be compiled, but

depends on the language chosen
– Interpreted by the language interpreter
– Usually requires stronger / detailed

programming skills and understanding than
shell scripting

– All scripts begin with #! (hash-bang) in column
1 of the first line, followed with the absolute
path to the interpreter, plus options if needed

