

CST8177

Services,
Daemons,
and Logs

Services
A service is just that – a facility that provides something
useful in a Linux/Unix system. I suppose even Windows has
services, but that's not within our scope today.
A service is provided by a daemon.

init NetworkManager─ ─┬
 ─├ abrtd
 ─├ acpid
 ─├ atd
 ─├ automount 4*[{automount}]───
 ─├ crond
 ─├ cupsd
 ─├ irqbalance
 ─├ ntpd
 ─├ rsyslogd 3*[{rsyslogd}]───
 ─├ 2*[sendmail]
 ─├ sshd
 ├ ...

Daemon?
Yes, pronounced "demon" but spelled daemon. Blame James
Clerk Maxwell (1831 - 1879)), he of Maxwell's equations for
electromagnetic theory.
He spoke of a "thought experiment" in entropy, using a
sealed box divided by a partition with a small hole in it.

Maxwell's Daemon
Maxwell's daemon sorts air molecules by speed, fast ones
(red) to the right, and slower ones to the left (blue). Since
their speed and their temperature are related, this has the
effect of cooling the left-hand side – a refrigerator.
Maxwell's daemon (not an unusual term, with fewer
religious connotations in the 19th century than it seems to
have today) was a mindless automaton that did one thing
and did it well: detected air molecules and sorted them by
their speed/temperature.
We might call this refrigerating service the "cool" service,
and give the daemon the name "coold".
Hence our daemons are automatic processes that provide a
service. Max's was preprogrammed, as are ours, but we
may want to check on what our daemons are doing and
exercise some level of control.

Init and its processes
We've already seen how init manages various services'
programs through the runlevels by the scripts in
/etc/rc.d/init.d and the soft links in /etc/rc.d/rc?.d
(where ? represents a runlevel number from 0 to 6).
We've also seen the chkconfig command and used it to see
which service is started at which runlevels:
System Prompt$ chkconfig --list rsyslog
rsyslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
Which is fine if we remember the service name. Of course,
grep can come to the rescue:
System Prompt$ chkconfig --list | grep log
rsyslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
syslog-ng 0:off 1:off 2:off 3:off 4:off 5:off 6:off
Whatever syslog-ng (next generation?) may be, it's always
off so we can ignore it.

chkconfig vs service
The chkconfig command allows us to manage the runlevels
in which the services are started. It does not do anything to
any running process, the daemons that actually provide the
services.
To manage the service daemons themselves (as root,
naturally), we use the rather oddly-named service
command. Oddly because while it does control the services
that are offered, it does so by controlling the daemon.

service daemon command optional-options
It's done by running the script in /etc/rc.d/init.d with
the matching name. For example, say you wanted to stop
the crond daemon to end the cron service. The command is

service crond stop
What actually runs is this:

/etc/rc.d/init.d/crond stop

Inside the script
Well, isn't that neat! The command used in service is
passed directly into the script for crond. Here's what it
looks like inside (heavily edited):

case "$1" in
 start)
 ...
 stop)
 ...
 restart)
 ...
 reload)
 ...
 status)
 ...
 *)
 echo $"Usage: ...
 exit 2
esac

Notifying Daemons
Now we've tied together the init scripts, the runlevels and
chkconfig to manage them, plus the service command to
run the scripts under our control to manage the daemons.
As we've seen with crond, each daemon has (or is likely to
have) a configuration file of some sort to tell it what to do.
For crond, it's a list of times and associated actions.
It's easy to notify crond that there's a change - it checks
every minute anyway so there's nothing to do. With most
other daemons, we have to tell it to re-read its config file.
One way is to restart the daemon:

service rsyslogd restart
Since restart is one of the commands these scripts must
support, that's fine. We could even do a stop and a start.
Note, though, that these mean that an in-use service has to
either drop all users or at least block new users from the
service while it does its restart.

Signalling a daemon
It turns out that there's another way.
Recall that a daemon has no terminal (this comes up again
in a few minutes). Therefore, its terminal can't actually do
anything including provide stdin, stdout, or stderr.
It also can't lose its connection. In the olden days when
dinosaurs walked the earth, a typical Unix user connected
to the system using a dumb terminal over wires or a phone
line. The call can drop, the user can pull the cable, the
terminal can lose power. As a result, the SIGHUP signal was
devised to notify a process that its terminal had gone away
(HUP is short for Hang-UP).
For daemons, with no terminal, SIGHUP was re-purposed to
cause that daemon to re-read its config file:

kill -SIGHUP rsyslogd
No users have to be deprived of the service, merely delayed
a bit (perhaps). Much better.

Messages from a Daemon
No stdout or stderr, eh? So how does a daemon notify us,
the admins, of its on-going status or any problems?
In those same olden days, each daemon logged its own
output to some sort of log file on disk. Each one (naturally)
did it differently, and each one handled the growing size of
a log file in its own unique manner.
Some clever people came up with a system-wide logging
facility, a way to get to it, and a way to manage log file
growth. Today every daemon and even the kernel use the
system log. Look in /var/log to see some of the files.
We'll look at each of these in turn.

Logging: syslog and rsyslog
Originally the service was called syslog, and you will hear
the service called that even today amongst Old Geeks. But
it was revised a few years ago and is now called rsyslog
with the daemon named rsyslogd. The revised service has
also subsumed the sysklog kernel logging facility.
It has the config file (see rsyslog.conf(5) for full details)
/etc/rsyslog.conf that contains:

● Global directives
● Templates
● Output channels
● Rules

It should also contain lots of comments (which start with a
hash character #) and blank lines for readability. Both are
ignored, so you can use them freely.
We will only consider the Rules section in this course.

Logging Rules
They are deceptively simple. Each rule takes a single line,
with a selector on the left and an action on the right,
separated by white space (blanks and tabs).
The selector is in two parts, the facility and the priority,
joined by a dot.

selector action
facility.priority action

There are a whole host of possible actions, from the typical
one of "put the message into this log file" to "tell everyone
logged-in at once!!!" and lots in-between including email.
The most typical action would be, for example, for cron
which has /var/log/cron. It's a requirement to give the
absolute path.
To tell everyone logged in, the action is just *, an asterisk.
It uses the wall(1) command facility.

Facilities
There is a fixed list of facilities, pre-defined for a variety of
purposes:

auth authorization
authpriv security
cron crond
daemon other unnamed daemons
kern the system kernel (was sysklog)
lpr printers
mail the email service
news the Usenet news service
syslog syslog (rsyslog) itself
user user related
uucp inter-system communication; obsolete
local? where ? Can be from 0 through 7; local use

Priorities
The priorities are the level of importance of the message,
and are fixed. They are listed here in ascending order, so
debug has the lowest priority and emerg the highest. This is
important, since messages are sent to a range of priorities.

debug for system debugging activities
info informational messages
notice general notices
warning normal, but significant, condition
err actual errors
crit a critical error
alert take immediate action
emerg (once called panic) system unusable

Messages are logged according to the rules for the
specified priority and all lower priorities (higher in the list).
A crit error (for example) is also logged to err, warning,
notice, info, and debug.

Selectors
A selector is a facility, a dot, and a priority level.
A simple selector might be mail.info to log mail issues to
info and debug priorities to whatever action is defined.
Selectors can be combined in certain ways. For example,
news,mail.info logs both news and mail issues. *.emerg
will handle all facilities emerg priority messages the same
way. And news.warning;mail.err will use the same action
for each as if it were a separate selector.

, combine facilities
*. all facilities
.* all priorities
; combine selectors
.none no priority
=priority only this priority
!priority not this priority, only higher

How to log a message
By using the logger(1) command, of course. It is a shell
command interface to the rsyslog system log daemon.
logger [-isd] [-f file] [-p pri] [-t tag]

[-u socket] [message ...]
In its simplest form, it requires a priority and some text. It's
like a simple echo, except for the priority (really a complete
facility.priority) and no output appears on the screen.

logger -p mail.info incoming mail is blocked
The rules are examined and the message (which might be
quoted) is sent according to the selector and its action.
-i Log the process id of the process
-s Log the message to stderr as well as rsyslog
-t tag Mark every line in the log with the specified tag
-f file Log the specified file contents
-- last argument; the message can start with a -

Log management
Logs grow. Every time a message is sent to a log file, the
log file gets bigger. Over time, log files could eat up even
the largest disk. What to do?
The first step is log rotation. The logrotate script is issued
by crond from cron.daily. It in turn runs the logrotate
command, which gets its orders from /etc/logrotate.conf
where the default log rotation rules are (see logrotate(8) for
information on both the command and its config file).
The second step is to age the log files, and keep only the
most recent messages. Combined with rotation, it means
keeping some fixed number of old log files.
Logrotate renames the current log file, generally adding
the date of rotation or a sequence number, and then creates
a new empty log file of the correct name. If there are now
too many old log files, the oldest is deleted.

logrotate.conf
Here's the first part of my file, lightly edited. The key items
are weekly rotation for 4 old log files using the date
extension style dateext.
see "man logrotate" for details
rotate log files weekly
weekly
keep 4 weeks worth of backlogs
rotate 4
create new (empty) log files after rotating
create
use date as a suffix of the rotated file
dateext
RPM packages drop log rotation info here
include /etc/logrotate.d

But what about that reference to /etc/logrotate.d? It
contains a whole lot of other logrotate config files, named
for the log user each relates to.
Here's the file for process accounting (comments removed):

/var/account/pacct {
 compress
 delaycompress
 notifempty
 daily
 rotate 31
 create 0600 root root
 postrotate
 /usr/sbin/accton /var/account/pacct
 endscript
}

It contains a separate set of rules just for this process. It
runs daily with 31 backup copies. Note how it is careful to
create new log files with owner root and group root with
0600 permissions. It takes money seriously!

