

CST8177

Scripting 1: Why?

Why scripting?
Why would anyone want to know how to write a script?
Why is is particularly important for a sysadmin?
Here are 7 reasons to consider:

1. avoid complex typing, preventing possible errors
2. automate repetitive tasks
3. use when an alias gets too complex or not possible
4. make new, specialized commands
5. automate long and/or complex tasks
6. handle rare but complex activities
7. create a "wrapper" for a program

These are all valid reasons, especially for a sysadmin
managing a Linux/Unix server on behalf of an enterprise.
The reasonable use of scripting will make you more
productive, more accurate, and more efficient, increasing
your value to your employer.

1. avoid complex typing,
preventing possible errors

Imagine that you wish to perform an essentially simple
action, but you first have to establish a certain
environment or set variables in the environment, such as
the pid number of a service or something similar. Imagine
also that there's a choice of method depending on what
you're about to do, each one essentially simple in itself.
Write a script, then, to make the choice and establish the
desired environment. You will make fewer mistakes,
especially if this is a task not often done.

1. avoid complex typing,
preventing possible errors

Example:
In order to work with a raw hard drive, on the partition
table for example, you must first lock the device in one
of a few ways in order to prevent automount from
mounting it as part of the file system.
The GNU partition editor /usr/sbin/gparted is a script
which uses devkit-disks and possibly hal-lock for
mount prevention if the binaries exist and their
daemons are running. If neither is available, then it just
runs /usr/bin/gpartedbin (the program) and hopes.
Setting both lock types requires this command:
devkit-disks --inhibit -- \
 hal-lock --interface org.free[too long]... \
 --exclusive --run "$BASE_CMD"

2. automate repetitive tasks
There's something you have to run daily, weekly, and
monthly, or maybe at different event-based times. It's the
same thing over and over, and you find it tedious. Boring.
Not worth your time. You'd rather play Solitaire.
Write a script so you only have to start it. Maybe you can
even get cron or anacron to run it on schedule, send
errors to the system log, and only have to check up on it
every now and again.
Sounds good to me!

2. automate repetitive tasks
Example:

The anacron program itself needs invoke each valid
program in a directory. It needs to skip any program
(executable or script) related to the RPM package
manager's backup files or any vim swap files, or any
program specifically denied or allowed. It also needs to
log the process for each job run, with its results.
The anacron program /usr/sbin/run-parts is a script,
and does the task as outlined above, logging messages
to the cron.notice facility/priority via logger at the
start and end of each job run. It's given the daily,
weekly, and monthly directories (/etc/cron.daily,
/etc/cron.weekly, and /etc/cron/monthly) from
/etc/anacrontab at the appropriate time, and runs
everything it needs to. The sysadmin need only ensure
the right script or program is in the correct directory.

3. use when an alias gets
too complex or not possible

The man page for bash says this about the alias built-in:
Aliases allow a string to be substituted for a word when
it is used as the first word of a simple command. ... The
first word of each simple command, if unquoted, is
checked to see if it has an alias. If so, that word is
replaced by the text of the alias.
[snip]
There is no mechanism for using arguments in the
replacement text. If arguments are needed, a shell
function should be used (see FUNCTIONS below).

An alias is a simple substitution with no possible
arguments, and anything complex more requires a script
or a function (a type of script).

3. use when an alias gets
too complex or not possible

Example:
If I want a short command to list all the soft links in a
directory, I will discover that there is no way to use
alias to do it. This is just not possible, when I want to
put a directory reference where the ??? is.
alias lsl="ls -l ??? | grep '^l'"

However, this will work just fine as the script file lsl:
#! /bin/bash
ls -l $@ | grep '^l'

System Prompt$ lsl /etc/rc.*
lrwxrwxrwx. 1 root root 13 date /etc/rc.local ->
 rc.d/rc.local
lrwxrwxrwx. 1 root root 15 date /etc/rc.sysinit ->
 rc.d/rc.sysinit

4. make new, specialized commands
The lsl script above is a new, specialized, but trivial
command. There are often opportunities to create much
more useful commands (I can easily type in an lsl-
equivalent when I need it).
Consider a more complicated and more useful command,
such as the service command we've just addressed for
controlling daemon processes. It is a script.
See service(8) for details on how to use it. It has 3 forms:
service SCRIPT COMMAND [OPTIONS]
service --status-all
service --help | -h | --version

The second and third forms are processed locally, inside
the script. The first form invokes the control script named
SCRIPT from the /etc/rc.d/init.d directory, the same
scripts used by init at the system start-up.

4. make new, specialized commands
Examples:
System Prompt$ service -h
Usage: service < option > | --status-all |
 [service_name [command | --full-restart]]
System Prompt$ service --version
service ver. 0.91
System Prompt$ service crond status
crond (pid 2779) is running...
System Prompt$ service ups status
upsd is stopped
upsmon is stopped

5. automate long and/or complex tasks
Some tasks can require a lot of command typing or force
you to put in complicated information (we've already seen
some of that). For example, it is sometimes difficult to
locate an entry in the man pages, often because of the
form of the name or because an entry is hidden behind
another of a lower section number.
Yet there is a whatis database that contains short
descriptions of some system commands by keyword. It
would be lovely to be able to search it simply and get man
page references.
There are 2 simple ways to do that, neither requiring any
knowledge of the database files involved. They are the -k
option of the man command which just invokes the
/usr/bin/apropos script. The script itself simply uses
grep and is aware of the whatis file location and format.

5. automate long and/or complex tasks
Example:

The description in the man page for man -k is:
 -k Equivalent to apropos

The apropos script is what does all the heavy lifting. Its
own man page says:
apropos searches a set of database files containing
short descriptions of system commands for keywords
and displays the result on the standard output.

It searches the whatis database for man pages. Reading
whatis(1) gives a little information:
whatis searches a set of database files containing
short descriptions of system commands for keywords
and displays the result on the standard output. Only
complete word matches are displayed.

This is the key line in apropos:
grep -"$grepopt1" "$grepopt2""$1" $d/whatis

6. handle rare but complex activities
There will be activities that will be done only rarely, and
naturally become scripts to store the research that has
been done on them. There are annual activities for many
machines, and indeed even monthly activities can be
difficult to recall.
You could document it in a lab book and re-type everything
when it's needed, but why not just create a script?
You may also be required to provide an occasional service
to users, perhaps to train them in the use of some tool or
facility. Scripts can be handy to avoid you going through a
setup process on many user systems.

6. handle rare but complex activities
Example:

You can set up vim for a tutoring session using the
/usr/bin/vimtutor script. The facility itself is not
complex, but because it's been designed for novice
users, it has to cover a wide range of input possibilities.
For example, it supports 11 different names for vim plus
10 more for gvim (graphical vim), which it also supports.
It then uses both a standard (/tmp) and a non-standard
way to create a temporary work file. It starts the correct
vim from the list of 21 for the session, and even sets up
a mechanism for resuming control to clean up for the
user after the session is over.
Most of this could, in theory, be handled by some
documentation on the process, but the script approach
minimizes calls from users for assistance. That's well
worth a 74-line script.

7. create a "wrapper" for a program
This may well be the most common reason for a script. We
have seen how vim tutoring uses a setup script, but it's not
exactly a wrapper. Examples include /usr/bin/firefox
and both /usr/bin/vmware and /usr/bin/vmplayer.
A simple wrapper is /bin/gunzip which invokes the
regular /bin/gzip program with unzipping arguments.
Here is the complete wrapper, less help and usage:
#!/bin/sh
PATH=/bin:$PATH
exec gzip -d "$@"

Notice that the hash-bang line invokes /bin/sh, the
standard shell, and not the bright, shiny new bash. It's
often called shell, but it's spelled sh. It's used when wide
distribution is needed, since every system must have sh.
The script first makes sure the PATH includes /bin and
then invokes gzip -d with all the arguments given.

Why write scripts?
The answer to the original question should now be clear in
your mind. There's really no alternative to effective
scripting for a top-level sysadmin.
We've looked at bash and sh scripts (all sh scripts can run
in bash; the reverse is not necessarily true) but there are
also occasions to use Perl, Python, and many other
scripting tools. You will learn to select the right tool for
the task at hand through experience.
A script doesn't have to be long (see gunzip) or
particularly complex (see vimtutor). Often much of the
script is comments and blank lines for self-documentation
and readability, or more importantly, error-checking the
input arguments, configuration and other file existence to
make the use of the script idiot-proof. The "meat" of a
script is often only a few lines.

