

CST8177

Scripting 2: What?

What can you do in a script?
1. A script can run any program or script, anything that's

executable.
If it's a command-line program (CLI) the script can
interact with the program or act as a filter to it for the
keyboard user. If it's a graphical application (GUI), the
script can set its start-up arguments but cannot
interact with it or mediate its interaction with the user.
In either case, the script can examine its exit value and
report on that, to the screen or to the system log as
appropriate.
The script can also intercept failures of the program,
restart it, shut-down gracefully, or ask the keyboard
user what to do.

What can you do in a script?
2. A script can read input, examine it, and make a

decision about what to do based on it.
The input can be from any text file (binary files are
impractical) that the user has at least read access to.
Or the input can be from stdin, directly from the
keyboard user.
There are, as is usual in Linux/Unix, several ways to
actually get the input, and selection of the method may
make a difference to the operation of the script. There
is a read service built-into the bash shell which is often
used. Shell (sh) is often more complicated to use, but
it's still possible.

What can you do in a script?
3. A script has many ways to write output.

It can write to any text file (again, binary is
impractical) using redirection either from another
command or program or the echo and printf
statements. This includes, of course, stdout and
stderr as long as the script is running in the
foreground.
A script may also write to the system log files using the
logger command. This is most useful for a script
running in the background or as a daemon, when there
is no access to any sort of console or terminal.
Many regular commands also have a way to enable or
disable normal output. As an example, grep has the -q,
--quiet, and --silent options for stdout, as well as
the -s or --no-messages options for most of stderr.
For some commands and situations, redirecting output
to /dev/null must be used.

What can you do in a script?
4. A script can calculate numbers using normal BEDMAS

priorities (brackets, exponentiation, division,
multiplication, addition, subtraction) following the
rules for integer numbers *.
You can use both constants and variables, including
system variables and command-line arguments.
You can manipulate strings and sub-strings with simple
parameters, converting freely between strings and
numbers. You can combine these with your own
configuration files (and those of other programs) and
use other techniques to set default values.

* Integer arithmetic has no fractional values. Any
fractional portion created is simply discarded at once.
Thus ((1 / 2) * 2) gives a result of 0, not 1.

What can you do in a script?
5. A script can control the sequence of execution of its

own statements.
It can compare numbers or strings, test file and
directory status, search for strings and regexps, using
the result to decide which statements to execute and
which to skip.
A script can process a group of commands repeatedly,
in one of several varieties of loops. It can do this by a
numeric count, by the result of another command, or
by a condition or event.
It can handle different cases for values, using different
statements for each individual case.
A script can even trap signals and choose how to
proceed, ignoring any signal except SIGKILL if that's
what is required.

What can you do in a script?
6. A script can decide when to terminate itself; it does not

have to run through to the end.
The termination can be early, in response to an error, a
failure, or a detected condition. The termination can be
at the end of processing input from a file or from the
keyboard, or from a list of command-line arguments. It
can even decide to run through to the end, if that is
what's required.
The termination normally has an exit value that can be
tested by subsequent statements, just as a script can
test the termination status of any command or
program.

Sample Script
#! /bin/bash
create variables with initial values
declare n=$#
declare count=0
show how many command arguments there are
echo Number of arguments: $n
for each command-line argument, repeat
while (($count <= $n))
do
 # show the arg number and its |value|
 eval "echo arg $count '|'\${$count}'|'"
 # count each argument processed
 let "count += 1"
end loop
done
echo all arguments evaluated
exit 0

