
CST8177

bash Scripting
Chapters 13 and 14 in Quigley's

"UNIX Shells by Example"

bash Version Reminder

● The original version of /bin/bash was version 1 [GNU
bash, version 1.14.7(1)], which does not support all of
the features. It remains upward compatible with the
original Bourne shell, /bin/sh.

● Fedora 14 uses GNU bash, version 4.1.7(1)-release
when it's fully up-to-date. If you are using another
Linux system, make sure you are using a reasonably
recent version of bash.

Some Shell Stuff
● We've been using the bash shell from the command

line all semester. However, Chapter 13 is full of
details. Be sure to read and re-read it carefully,
taking notes while you do. Some people even write or
highlight right in their book - if you can believe it!

● Note, in particular, such things as:
● set -x and set +x to turn script expansion tracing

on and off;
● set -v and set +v to toggle script line tracing;
● set -n and set +n to toggle script execution;
● or use #! /bin/bash -xvn to set them all on;
● controlling prompt contents (especially, but not

only, PS1 and PS2);
● built-in commands like alias, dirs, help, popd,
pushd, and type;

● And much more! It's a big chapter.

Structured Scripts
We will take advantage of some basic CS concepts:

● Structure Theorem: it is possible to write any
computer program using only three control structures:

● Sequence - executing one statement after another
● Selection - choosing between two actions
● Repetition - repeating a sequence of instructions

while a condition is true.
● Top-down development:

● Incorporate the control structures into a modular
design

● Start at a top level and break down a problem into
a hierarchy of increasingly refined procedures

● The scripts and functions are the modules of the
program

Order of Processing

● The verb is the first token on the command line at the
prompt or within a script. Since it can be many
different items, it's processed in this order:

● Aliases
● Keywords
● Functions
● Built-ins
● Executables

● What conclusions can you draw from this sequence?

Order of Processing

● The verb is the first token on the command line at the
prompt or within a script. Since it can be many
different items, it's processed in this order:

● Aliases
● Keywords
● Functions
● Built-ins
● Executables

● What conclusions can you draw from this sequence?
● You can replace a shell built-in command with

an alias or a function;
● You can also replace an executable program

with an alias or a function.
● Consider how each of these could be useful.

bash Variables (pages 810 – 831)

Normally, variables are local to the current shell, but
they can be exported to the environment (export built-
in) so they can be globally available to all sub-shells as
well.
By convention, global names are UPPER CASE while local
variables use mixedCase (also known as camelCase
because there's a hump in the middle) or under_scores.
Variables ought to be declared with the declare built-in
even though it's not strictly necessary. I recommend that
all arrays and key variables be declared, but a loop
control variable (conventionally i, j, and k) need not be.

In addition, there are some predefined variables created
upon entry to a script. The command-line arguments are
referred to as $0, which is the script name and path (you
can use $(basename $0) and $(dirname $0) to separate
them), $1 to $9 for the first 9 arguments, and ${10} and
up for more (the {} are required for more than 1 digit; you
can also use ${1} instead of $1 if you want to be
completely consistent).
The entire list of arguments from $1 on up can be obtained
from $@ (space-separated) or $* (technically, separated by
$IFS, the inter-field separator; it's usually a space as well).
You can find out how many arguments there are from $1
up by using $#.
Finally, $? returns the exit value of the most recently
completed command or a script exit value. It can be handy
for determining the success or failure of a command, but
remember than any intervening command will change it.

It terms of the planning and design of your solution, you
are to list your key variables in a Data Dictionary, one for
each script or function that you write. You don't need to
define any of the predefined variables, nor any casually
used variables such as a loop control.

There need be no PDL for a variable, since the Data
Dictionary addresses that. There are instances where you
may wish to show where and how a variable is initialized,
however.

Name Type Range Purpose

len -i 0 to 100 length of string

my_str string N/A the string

list -r string N/A list of char

Declaring bash Variables

-a the variable is an array

-i the variable is an integer,
not a string

-r the variable is read-only (a
constant)

-x export the variable to the
environment

You should declare all variables you create, using the
built-in declare command and its options:

You can also define read-only variables with readonly,
and local variables (not for export) inside a function
with local. You can assign an initial value at the time
you declare a variable.

Some Variable Examples

declare -ai myArray # numeric array
declare -r pi=3.1415926 # constant float
readonly maxsize=99 # constant integer
declare my_string='x' # local string
local anotherString # local string
declare -i len=0 # local integer
declare -ix DEPTH=37 # global integer
You can use the $ operator (or ${...})and the echo
command to inspect these:
echo "pi is $pi and maxsize is ${maxsize}"

Note that the variable pi above is actually a string, and
not a number. If you try to use it as a number, it will
produce an invalid operator error for the '.'.

Screen Output: echo
● Page 1066 in the textbook
● A quick way to have a look at variables is to use echo

with some useful escape sequences:
echo [-e][-n][-E] [argument ...]

● -n prevents a newline at the end of the echo
● -e permits the use of escape codes
● -E disables escape codes (default).

● The full list of escape codes is in the textbook, but the
most useful probably include

● \a alert
● \c no newline (used at end, same as -n)
● \n newline right here
● \t tab, for formatting output

Screen Output: printf
● Pages 821 - 823
● You have much more control with the printf

command:
printf format-string [argument …]

● Notice that the format-string is required, but the list
of arguments is not

● The format string uses special printf codes to format
data (see printf(1) and the section of printf(3) titled
"Format of the format string"), such as:

● %i display an integer value
● %s display a string
● %c display a single character

● Plus the escape codes like \n and \t as with echo.

printf formats

The format-string can be a variable or a string, but it
mostly consists of normal characters which are simply
copied to stdout, escape sequences (which are converted
and copied to stdout), and format specifications, each of
which causes printing of the next successive argument.

In addition to the standard printf(3) formats (see_both:
<http://www.daemon-systems.org/man/printf.1.html>
<http://www.gnu.org/software/bash/manual/bashref.
html>), %b means to expand escape sequences inside the
corresponding argument, and %q means to quote the
argument in such a way that it can be reused as shell
input (for example \ becomes \\).

printf Examples

Normal printf
Prompt$ printf "%s\n" "ab\ncd"
ab\ncd

Quoting printf
Prompt$ printf "%q\n" "ab\ncd"
ab\\ncd

Backslash printf
Prompt$ printf "%b\n" "ab\ncd"
ab
cd

Variable printf
Prompt$ declare fred="stuff"
Prompt$ printf "%s\n" $fred
stuff

PDL for output
Since the PDL is explaining WHAT and WHY, in order to
describe output simply use a keyword like PUT, WRITE,
DISPLAY, or SHOW. Be reasonably consistent in each
scripting project.

PDL: PUT error message to stderr
Script: echo Improper input format >> stderr

PDL: DISPLAY result of calculations
Script: printf "%10s has %i and %i\n" acct v1 rc

Briefly, make the PDL easy to read and to understand in
its context.

Screen Input: read
● Pages 867 – 871 in the textbook
● To read user input in a script, use the read built-in

command:
read [-r][-p xx][-a yy][-e] [zz ...]

● where
● xx is a prompt string for -p
● yy is an array name for -a
● zz is a list of variable names.

● The -r option allows the input to contain backslashes,
and -e allows vi editing of the input line.

read Command

read [-r][-p xx][-a yy][-e] [zz ...]
● If zz is a single variable, the whole line of input is

placed there when ENTER is pressed.
● If there is a second variable name, the first receives the

first word and the second the rest of the line, and so on.
● If there are enough variables, one word is placed into

each one in sequence.
● If there are not enough input words, excess variables

are set to the null (also known as the empty) string, "".
● If there are no variable names given, the special REPLY

variable receives all the input.
● The read command returns 0 in $? (the command exit

status special variable) if it terminates normally with a
newline (ENTER), or else $? is set to 1 if Control-D (end
of file for stdin) or end-of-file (for another file) is found.

read Examples

read -p "Enter: " var # prompt for var

read # read into REPLY

read -a tt -p 'Array> ' # prompt for tt

read -p "proceed (Y/N)? " x # get Yes/No

PDL for input
PDL explains WHAT and WHY. To describe input simply,
use a keyword like GET or READ. It helps the reader if you
are fairly consistent in each scripting project.

PDL: READ array from file
Script: read -a my_array < file

PDL: GET OK to proceed?
Script: read -p "proceed (Y/N)? " x

As with the output, make the PDL easy to read and to
understand in its context.

Numeric Operators

Most of the common C-style arithmetic operators (widely
used; see also Java, C++, C#, and so on) are available in
bash, so the integer operations + - * / % can be used, as
well as += -= *= /= %= and both the ++ and -- operators
(see Quigley pages 884 - 885 for the complete list or
search for /^arithmetic\ evaluation in bash(1)).
Float operations must be done in the bc or another
calculator, or gawk, since bash does not support float
directly. Thus:

echo `echo "scale=2; 15/4" | bc`
Or, using variables:

declare y=15; declare z=4; declare m
m=$(echo "scale=2; $y/$z" | bc)
echo $m

Both print the bash string 3.75 as the result.

Arithmetic

● Arithmetic is normally done with the let command:
declare -i x=0

let "x = x + 1"
let x=$x+1
let x+=1

● You can enclose an arithmetic expression in
((...)) as well, or in $[...] or $((...)) to
have the value returned.

● For example, these are the same. In each case, the x
variable now holds the value that was displayed:

((x=x+1)); echo $x
echo $((x=x+1))
echo $[x=x+1]

More Arithmetic
● You may also do arithmetic in array subscripts (arrays

come later), so that these examples all have the same
effect on declare -i x=3

● let x+=1
● let "x = x + 1"
● ((x += 1))
● echo $[x = x + 1]
● echo $((x += 1))
● array[x++]="value"

● In each case, echo $x will print the result 4

Arithmetic PDL
You will not normally show the actual calculation, since
that's HOW. Instead, describe WHAT and/or WHY
you're doing it. For example:

PDL: CALCULATE area of room
Script: let "area = len * width"

PDL: COMPUTE total price
Script: ((total = num * unit))

PDL: COUNT next iteration of loop
Script: let i+=1

