
CST8177

bash Scripting
Chapters 13 and 14 in Quigley's

"UNIX Shells by Example"

Control: The IF Statement
(Quigley pages 886 – 896)

The command is executed and its result (the same as $?)
evaluated. If the result is zero, the then clause is
executed; if it's not zero, it's skipped. This evaluation is
then repeated in turn for each elif clause, if any.
If no then clause is executed, the statements in the
optional else clause is executed.

if command
then

statements
elif command
then

statements
else

statements
fi

Numeric if example
● Full-form simple if statement

declare -i x=1
if ((x==1))
then

echo x is $x
fi

 Or the compact form
if ((x==1)); then echo x is $x; fi

 Or the recommended form:
if ((x==1)); then

echo x is $x
fi

PDL for the if Control Statement
The PDL is really quite simple. Be sure to describe
WHAT is happening and/or WHY it's being done.

IF command as PDL
statements

ELSE IF command
statements

ELSE
statements

ENDIF

IF porridge burns
 PUT too hot
ELSE if porridge gluey
 PUT too cold
ELSE
 PUT just right
ENDIF

if ptemp > my_val; then
 echo too hot
elif ptemp < my_val
 echo too cold
else
 echo just right
fi

Command if example

Using a command (no brackets needed):
if grep -q "string" file.txt; then

echo \"string\" found in file.txt
elif grep -q "something" file.txt; then

echo \"something\" found instead
else

echo neither \"string\" nor \"something\"
fi

Be sure to get rid of any output to stdout (grep's -q).

What PDL would have preceded this?

Control: The CASE Statement
(Quigley pages 900 – 902)

The variable is compared with the values using the shell
wildcards (? * […]) , NOT regular expressions. All the
statements are executed for the first matching value until
the ending ;;. If no value matches, then the default *)
case is executed, if present.

case variable in
value1)

statements
;;

value2)
statements
;;

*)
statements
;;

esac

PDL for the case Control Statement
Some refuse to allow PDL for the case statement, in part
because it's called different things in other languages (like
switch) or because it's more like a long if-elif statement.
I don't think that's reasonable, but it is necessary to
describe it carefully. It's important to show the end of each
clause as well as the end of the entire control construct.

CHOOSE from variable description
 CHOICE value1
 statements
 END CHOICE
 CHOICE value2
 statements
 END CHOICE
 DEFAULT CHOICE
 statements
 END CHOICE
END CHOOSE

case Example

declare var="fred"
...
case "$var" in
 stuff)
 echo var was "stuff"
 ;;
 fred)
 echo var was "fred"
 ;;
 [fF]r?d)
 echo Fred, or something strange
 ;;
 *)
 echo default case
 ;;
esac

Loops: do and done

A do-done pair is use to mark the start and end of every
type of loop in bash. They frame a block of statements to
be executed each time control passes through the loop.
Control over the loop is completely in the hands of
whichever one of the control statements for, while, or
until that precedes the do-done statement block:

for/while/until loop control
do

statements
done

As with "then" in the if statement, we'll put the "do"
after a semicolon in the control line. Similarly, the PDL
will ignore the "do" and show the loop end as END FOR,
END WHILE, or END UNTIL.

Loops: The for Statement
(Quigley pages 903 – 907)

The do-done block is executed once for each word in the
wordlist, assigning each word in turn to the variable. If
"in wordlist" is omitted, the positional parameters $@
from the caller starting at $1 are used in its place.

for variable in wordlist; do
statements

done
As stated above, the PDL will look like this:

FOR description of wordlist
 statements
END FOR

for Loop Example (using $())

ls
for x in $(ls); do

cp $x $x'.backup'
done
ls

● The ls before the for statement shows:
abc def ghi
 The ls after the for statement shows:

abc abc.backup def def.backup ghi ghi.backup

for Loop Example (using $@)

declare -i count=0
for x; do

 let count+=1
echo Arg $count is $x

done

● If the command line had been invoked as:
./test-script apple banana cherry

 Then the output from the for loop will be:

Arg 1 is apple
Arg 2 is banana
Arg 3 is cherry

Loops: The while and until
statements (Pages 907 – 912)

● The do-done loop is executed as long as command
returns a value of zero (the same as true from $?).

while command; do
 statements
done

● until is the opposite of while, and executes as long
as command returns a non-zero value (false or error
from $?).

until command; do
statements
done

Numeric loops: a common idiom
You will often see, or use yourself, a simple numeric loop.
This example counts up, from 0 to $max, but others may
count from 1 or may count down, from $max to 0 or 1.
Note that counting often starts from 0.

declare -i i=0
...
while ((i < $max))
do
 echo i has the value $i
 let i++
done

This example also uses "post-incrementing". That is, the
adding of 1 to i is done at the bottom of the loop. You will
also see it incremented (or decremented) at the top of the
loop, depending on the purpose of the script.

Numeric loops: using until
This is the same loop, using until instead of while. Notice
that it's only the comparison that changes with the
command.

declare -i i=0
...
until ((i >= $max))
do
 echo i has the value $i
 let i++
done

Note about loops and string compares

If you try to use a simple comparison like:
while (($var==“fred”)) # numerical

or
while [[$var==“fred”]] # character

It sometimes, as in once in a while, won’t seem to work
correctly.
Bash can be very picky at times when dealing with
strings. I've heard this error reported but it's not very
likely. If you should run into it, use:

while echo $var | grep -q "^fred$"

I/O Redirection and Subshells for
Loops (Pages 923 – 927)

The whole of a loop right down to the done statement
can be treated as a unit for redirection and background
processing, so that constructs like these are possible:
Pipe data into or out of a loop:

command | for do … done
while do … done | command

Redirect file output or input for a loop:
until do … done >> filename
while do … done < filename

Run a loop entirely in the background:
for do … done &

The break and continue statements
(Pages 919 – 920)

● break exits from the current loop by executing the
statement after the done. That is, it leaves from the
bottom of the loop.

break
● continue send control to the command after the do

statement. That is, it returns to the top of the loop.
continue

● Both have an optional number. When it's supplied,
break breaks out of that many nested loops. continue
returns to the top of the nth loop back.

● These are quite dangerous. Use with extreme caution.
Better, don't use them!

break number
continue number

The null statement (Pages 898)

The null statement : (colon) does nothing at all. Use it for
empty then clauses, if you can't clearly reverse the test.
Of course, the command-end character ; (semicolon) does
pretty much the same thing.

if some-test
then
 :
else
 # do something exciting
fi

The select statement (Pages 912)

● Creating interactive text menus is much simplified by
using the select loop and the PS3 prompt.

select variable in wordlist; do ... done
● Each item in wordlist (use quotes if an item includes

blanks) is sent to stderr (not stdout) with a
sequential number to its left, after a PS3 prompt.

● The number selected by the user is stored in the
REPLY variable (like read) and the corresponding
word is placed in variable.

● Use a case or an if-elif to check the menu input.
● Because select is a loop control, the break command

must used to exit from it (or exit to end the script).
There is no ending condition as there is in for, while,
and until.

● Choose your prompt and set PS3 before your select.

Sample PDL for select
SET prompt
SELECT from list of characters
 CHOOSE from value returned
 CHOICE Bart
 PUT message
 END CHOICE
 CHOICE Homer
 PUT message
 END CHOICE
 DEFAULT CHOICE
 BREAK out of loop
 END CHOICE
 END CHOOSE
END SELECT

Implementation of select example
PS3="Who’s Your favorite Simpson? "
select x in "Bart" Homer 'Quit now'; do
 case $x in
 Bart)
 echo Eat my cow, man
 ;;
 Homer)
 echo "D'oh"
 ;;
 *)
 break # this choice exits loop
 ;;
 esac
done

